

Hi-drive

2A, 5A, 8A, 16A, 25A 35A, 45A

user's manual

rev.0.1 October 2005 (rel. software 0)

INDEX

1	APPLICABLE STANDARDS	5						
2	SAFETY SYMBOLS AND INSTRUCTIONS	6						
3	PRODUCT INTRODUCTION							
	3.1 Product description	9						
	3.2 Identification							
4	TECHNICAL DATA	12						
	4.1 Ambient conditions							
	4.2 Technical characteristics							
5	MOUNTING							
-	5.1 Dimensions and weights							
	5.2 Fastening							
	5.3 Mounting instructions							
6	ELECTRICAL CONNECTIONS	18						
Ũ	6.1 Connector design and pin-out							
	6.2 Cable lengths and sections							
	6.3 Protections							
	6.4 PE (Protective Earth) connections							
	6.5 Power stage supply connection							
	6.5.1 Connection to AC 3-phase network							
	6.5.2 Connection to AC 1-phase network							
	6.5.3 Continuous supply connection							
	6.6 Motor connection (MIL connector)							
	6.6.1 Motor without emergency brake							
	6.6.2 Motor with emergency brake							
	6.7 External braking resistor connection							
	6.8 Control stage supply connection							
	6.9 Analogue and digital I/Os connection6.10 Feedback connection							
	6.10.1 Resolver							
	6.10.2 Incremental encoder							
	6.10.3 Sinusoidal encoder							
	6.10.4 Sinusoidal encoder + EnDat							
	6.10.5 Sinusoidal encoder + Hiperface							
	6.11 Auxiliary encoder input connection							
	6.12 Connecting converters to the electrical shaft							
	6.13 Serial connection RS422/RS485							
	6.14 Serial connection RS232							
	6.14.1 Without converter RS232/RS422							
	6.14.2 With converter RS232/RS422							
	6.15 CAN Bus connection							
	6.16 Electro-magnetic compliance							
	6.16.1 Grounding.							
	6.16.2 Connection cables and shielding							
	6.16.3 Filters							
	6.16.4 General recommendations on cables							
_	6.17 Cabling general layout							
7	STATUS LEDS	47						

8 POWER SUPPLY MODE	48
8.1 "Low" voltage power supply	48
8.2 "High" voltage power supply	49
9 START-UP	50
9.1 Setting the default parameters	
9.2 Selection of motor type	
9.3 Changing motor data	
9.4 Setting feedback	
9.4.1 A feedback, input X6.	
9.4.2 B feedback, input X7	
9.4.3 C Feedback , input X9	
9.4.4 Speed feedback configuration	
9.4.5 Position feedback configuration	
9.5 Phasing procedure	
9.5.1 Type 1 phasing	
9.5.2 Type 2 phasing	
9.5.3 Pico-PLC phasing program	
9.5.4 Fine phasing	
9.5.5 Multiturn absolute encoder phasing	
9.5.5 Wuthtum absolute cheoder phasing 9.6 Speed control	
1	
9.7 Speed control adjustment 10 ANALOGUE AND DIGITAL I/Os	
10.1 Digital I/Os	
10.2 Relay outputs	
10.3 Uscite analogiche	
11 DYNAMIC BRAKING.	
12 KEY PARAMETERS	
12.1 Key parameters.	
13 OPERATING MODES	
13.1 Position control	
13.2 Torque control (operating mode 110)	
13.3 Electrical shaft and positioned (op. mod. 120)	
13.3.1 Speed mode:	83
13.3.2 Electrical axis:	
13.3.3 Positioner	
13.3.4 TAB0: profiles in memory	
13.4 Electronic came (OPM121)	
13.4.1 Posizionator	
13.4.2 Speed mode	
13.4.3 CAM1 and CAM2	
13.5 Position control via CanBus (operating mode 140)	
13.6 Additional useful functions	102
13.6.1 Capturing values	102
13.6.2 Programmable outputs	
13.6.3 Encoder simulation	
13.6.4 Motor cogging compensation	
14 PROGRAMMING DIGITAL INPUTS AND OUTPUTS	
14.1 The Pico-PLC	
14.1.1 Pico-PLC default program	114
14.1.1 Pico-PLC default program 14.2 Serial interface	

15 FIELD BUS	
15.1 SBC Can	
15.1.1 Description of fields in real time mode	
15.1.2 Description of fields in communication mode	
15.1.3 Description of extended message set #2	
15.2 CAN Open:	
16 PROGRAMMING THE CONVERTER THROUGH A PC	
16.1 MotionWiz	
16.2 Hyperterminal connection	
16.2.1 Creating and setting a connection	
16.2.2 ASCII protocol port RS-232	141
17 USE OF (OPTIONAL) KEYPAD	144
18 Appendix A : Conventions	147
19 Appendix B : Flash information	147
20 Appendix C : Software timing	
21 Appendix D : Continuous working	149
22 Appendix E : Alarms	
23 History of manual revisions	154

1 APPLICABLE STANDARDS

Electro-magnetic Compliance (Immunity/Emissions):

EN61800-3/A11 in compliance with the Directive 89/336/CEE

Safety:

EN61800-5-1 in compliance with the Low Voltage Directive 73/23/CEE modified by 93/68/CEE

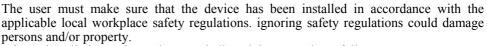
2 SAFETY SYMBOLS AND INSTRUCTIONS

Meaning of symbols, abbreviations and conventions used in this manual

Drive, converter, frequency converter and motion controller are various definitions of the same product: Hi-drive.

	RNING CAUTION, very important information. See the Manual before proceeding.
	HIGH VOLTAGE, live cables, possible danger of electric discharge.
	HIGH TEMPERATURE, danger of burns.
DANGER	Take precautions.
IMPORTANT	Study the manual carefully.

Abbreviations


FBK	Feedback.		
Pr	Decimal parameter.		
b	Binary parameter (bit).		
FFW	Feedforward, control advance function.		
R	Read parameter.		
W	Write parameter.		
Keypad-display	Keypad		
Drive	Converter		

The "Hi-drive" described in this manual does not contain any user-accessible parts. Any attempt to open the drive and access to internal components might cause an irremediable fault.

Some internal circuits are subject to voltages that could result in serious injury or death.

The converter must not be accessed or modified in any of its parts; any attempt to do so would cause the 1-year guarantee to be cancelled with immediate effect.

Prior to installation and use, the user shall read the manual carefully.

The installation, commissioning and maintenance of the drive shall only be performed by competent personnel, trained and qualified in the use of industrial electronic equipment.

Such personnel must be aware of the potential electrical and mechanical risks of motion-controlling equipment supplied by the mains.

IMPORTANT

High-performance controlling equipment such as Hi-drive can cause extremely fast movements at high forces. Unexpected movements may occur, especially during the development of control programs: take the necessary safety precautions and never touch the machine's moving parts.

Install Hi-drive in a protected environment.

provided for in this manual.

Before using any kind of drive or motor it is essential to evaluate the application in all of its aspects by checking features in the current catalogues. Users shall be solely responsible for the selection of the system and components they are going to use. Parker Hannifin Divione S.B.C. is not responsible for any use of the product other than as

High leakage current! Risk of electric discharge!

Leakage current can be over 3.5 mA. Before supplying power to the drive, make sure that all units (including the motor) are permanently grounded as shown in wiring diagrams. This is necessary also to conduct temporary or preliminary tests. For protective earth connections use a copper wire with a minimum section of 10 mm² throughout its length. For installations within the European Community, refer to standard EN61800-5-1, section 4.2.5.4.2. For installations in the USA, see NEC (National Electrical Codes), NEMA (National Electrical Manufacturers Association). The product user shall always comply with the above-said standards.

The drive surface can reach very high temperatures. Danger of burns.

This user manual is for the standard version of the converter.

All information in this user manual, including methods, techniques and concepts described herein, are proprietary information of Parker Hannifin Divisione S.B.C. – EME Division and of its licensees, and they shall non be copied or used without express authorization.

Parker Hannifin S.p.A. Divisione S.B.C. is committed to a continuous product upgrade and reserves the right to modify products and user manuals at any time without prior notice. No part of this user manual may be howsoever reproduced without previous consent by Parker Hannifin S.p.A. Divisione S.B.C..

THE "Hi-drive" CONVERTER PERFORMANCE IS GUARANTEED ONLY WITH MB and SMB SERIES MOTORS MANUFACTURED BY PARKER HANNIFIN SpA DIVISIONE S.B.C.

Training programs available on request.

- Connect the cabinet/converter/motor in accordance with the instructions that are given in this section and with the applicable safety regulations. For any questions or problems, contact our customer assistance service.
- Make sure that the converter is sized properly for the motor it will be used with. Compare the rated voltages and currents.
- Make sure the maximum power at terminals L1, L2, and L3 does not exceed the specified voltage even in the worst case (see EN60204-1, section 4.3.1). Excessive supply voltage can damage the converter.
- Make sure that the converter and the motor are correctly grounded.
- The user is responsible for the protection fuses in the AC or DC power supply of the converter.
- All power cables must have a sufficient section (see the table given in the "connections" paragraph) and must conform to the IEC227-2 regulation.
- The cables connected to the converter at the terminal cannot be fastened with tin-lead welding (EN60065, Art.15.3.5).
- <u>Do not ever</u> remove the electrical connections from a live converter.
- Even after having switched off the converter and disconnected the power supply there may be dangerous voltage. Wait at least 5 minutes before disconnecting motor cables from the drive.
- <u>Do not ever</u> open the converter. This is dangerous and invalidates the warranty with immediate effect.

IMPORTANT

Installation and cabling operations must be performed when there is no voltage at all in the entire electric cabinet. Make sure that the power switch on the converter is cut off from the emergency circuit. The first time the cabinet is powered up, qualified technical personnel must be present.

IMPORTANT

This product is intended for restricted distribution, in compliance with product standard EN 61800-3.

In a domestic environment, the product may cause radio frequency interference. If this is the case, the user shall take appropriate precautions.

ISBN0510041500

3 PRODUCT INTRODUCTION

3.1 Product description

HiDrive is the result of in-depth research and development and of a longstanding hands-on experience combined with a wide-ranging market research.

HiDrive focuses on the market of applications requiring a high degree of precision and accuracy, high performance, flexibility to connect to various supervision and control systems, high torques and custom drive arrangements based on specific applications.

HiDrive is a range of high performing, completely digital drives used both in closed-loop vector control mode and as servo drive (available as standard). The range offering is complete in several sizes, with 3-phase, 1-phase or continuous power.

The drive can be run in the following standard modes (usually called "*operating modes*"), both when it is used to control regenerative asynchronous motors or brushless motors: torque control, speed, positioner with trapezoidal profile, variable ratio/phase control electrical shaft, electronic cams, positioner via CanBus. These operating modes are available both in vector control and as servo drive. The drive comes with many other standard functions, such as S ramps, value capturing and comparison functions.

Only one parameter setting is used to chose an operating mode or to select between asynchronous or brushless motor control.

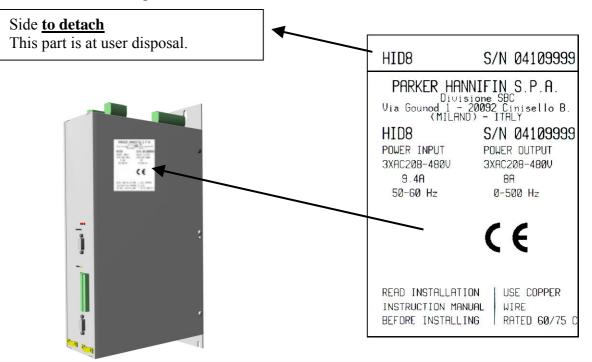
The standard HiDrive is equipped with three independent encoder ports, to which the following devices can be connected: resolver, incremental encoder, less wiring, sincos, sincos+absolute Endat mono and multirun, sincos+absolute Hyperface mono and multirun. Also available are a second incremental encoder or sincos or frequency/sign input, whereas encoder RS422 repetition has a high maximum output frequency and programmable pulses per revolution.

In order to have more connection flexibility of HiDrive parameters with the external word (inputs/outputs), the drive is provided as standard with a PLC (called "*picoPLC*"). The picoPLC has a capacity of up to 256 instructions, scanning time of 6.144 ms, Ladder and Instruction List programming languages. It is a very powerful tool to implement a simple per sequence logic in the drive.

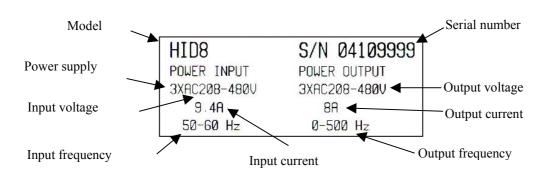
For complex applications, the drive can house (as option) a full-IEC1131 environment (called *"LogicLab"*), that can be programmed using all 5 standard and multitasking languages (6 tasks with different cyclic execution times).

The drive is equipped with 3 leds providing an immediate display of the drive status, also without keypad on the drive. HiDrive can also be equipped with an optional removable alphanumeric keypad with internal memory to display parameters, send commands, write picoPLC instructions and providing alarm diagnostic functions. Through the keypad it is also possible to "clone" parameters and picoPLC programs between drives.

An advanced software tool (called "*MotionWiz*") is also available free of charge to be able to connect the drive to the PC via serial link RS422 or RS232. Such tool allows to interactively configure the drive, to program the picoPLC and to display the variables by means of a software oscilloscope.


Besides the features described above, the drive comes complete with the following standard and optional functions:

- ✤ Automatic cogging compensation functions
- ✤ High, adjustable resolution of position loop
- Analogue inputs and outputs, digital inputs and outputs, relay outputs
- Serial communication port RS232
- Serial communication port RS422/485
- CanOpen DS301 or SBCCAN Fieldbus (standard)
- Three option slots
- ✤ I/O Expansions (optional)
- Profibus-DP Fieldbus (optional)
- ✤ Integrated EMI filter to HID8 (included)
- ✤ Low voltage power supply
- ✤ Separate 24Vdc supply to the control logic
- Programmable power supply for motor feedback device
- Encoder input voltage sensing to automatically compensate for any voltage drops in the encoder supply due to the cable length
- Dedicated motor braking driving port
- ♦ PWM up to 16kHz


3.2 Identification

In the converters of the Hi-drive series, a label is attached on the right side that contains all the essential information to correctly identification of the unit. <u>It is important to refer to this</u> <u>label before requesting any kind of technical information from Parker Hunnifin S.p.A.</u> <u>S.B.C. Division.</u>

An examle of this label is given below.

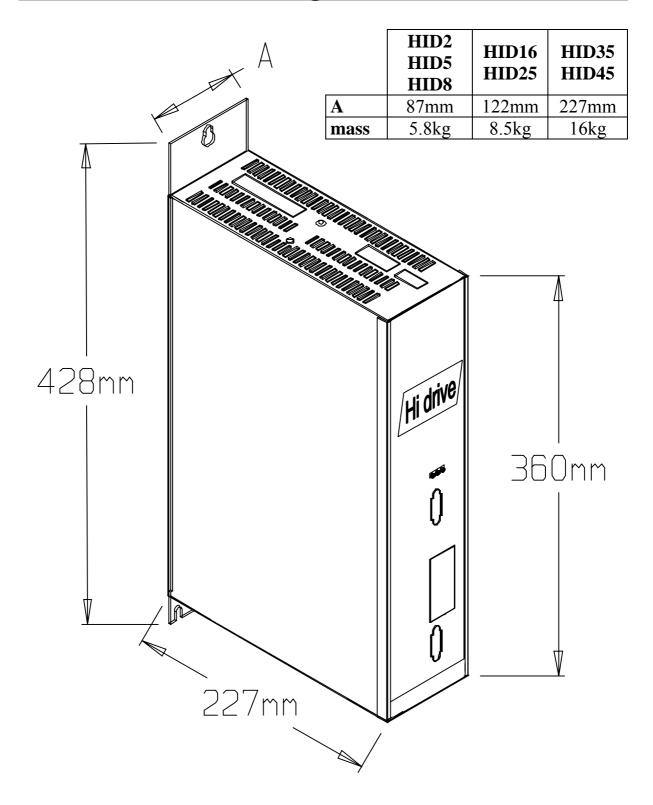
Every model is identified in the label and the handbook from acronym "HID" (Hi-drive series) followed from a number, which represents the nominal output current of the apparatus. Every label identifies:

4 TECHNICAL DATA

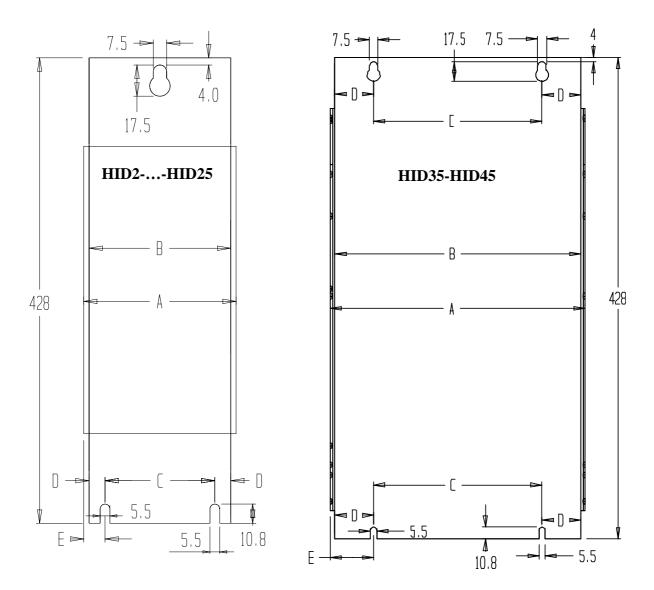
4.1 Ambient conditions

Features	Description
Storage temperature	-20°C ÷ +65°C (-4°F ÷ 149°F)
Ambient operating	0°C ÷ 45°C
temperature	$(32^{\circ}F \div 113^{\circ}F)$
Relative humidity	< 85 %
Max. installation altitude	1000 m ASL
Converter's degree of	IP20
protection	1120
Degree of pollution	2 or lower

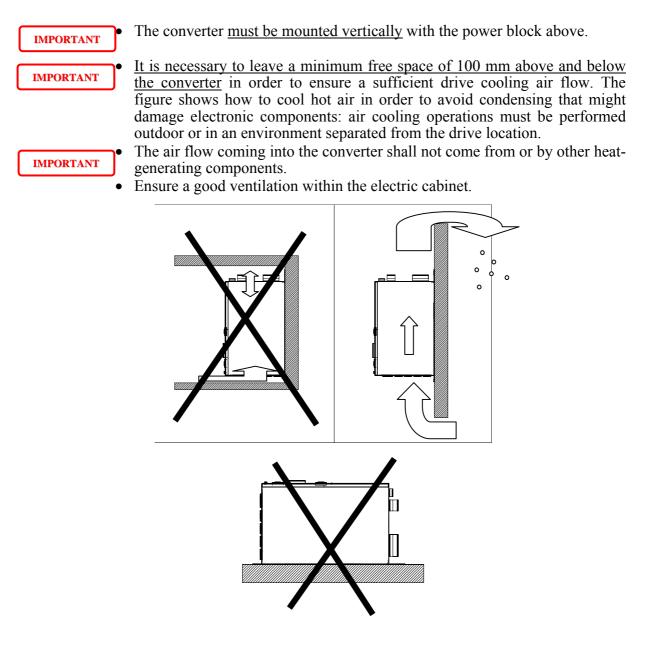
4.2 **Technical characteristics**


Description	Symbol	Unit		Model				
	Symbol	Omt	HID2	HID5	HID8	HID16	HID25	
POWER STAGE								
Power supply : the drive power can be either 1-phase, 3-phase or continuous								
Nominal 3-phase voltage	V _{mains}	V~		$200 \div 480 \pm 10\%$				
Nominal 1-phase voltage	V _{mains}	V~				±10%		
DC voltage	V _{dc}	V=				±10%		
Frequency	f _{mains}	Hz		n)60 =			
Continuous service installed load	S	kVA	1,4	3,5	5,6	11,2	17,5	
Switching frequency (selectable)	f_{sw}	kHz	8-	16		8		
Default switching frequency	\mathbf{f}_{def}	kHz			8		-	
Nominal output current	Icont	Arms	2	5	8	16	25	
Peak output current 2s	Ipeak	Arms	4	10	16	32	50	
Current derating with f _{sw} >f _{def}	Kf	p.u.	0	,7		-		
Current derating with V _{mains} >440V	Kv	p.u.			0,9			
Output frequency	fout	Hz			500			
Power stage loss	Ploss	W	30	75	120	220	350	
Internal fan capacity	Q	m ³ /h	32	47	63	168	168	
Braking resistor	Rb	Ohm	200	90	75	40	27	
Continuous internal braking power	Pb cont	W	75	75	120	180	180	
Braking power peak 790Vdc	Pb peak	W s	3120 1	6935 0,7	8320 0,5	15600 0,2	23115 0,15	
Continuous power	Pout	W			e diag	<i>.</i>	,	
Overvoltage protection	V _{ovl}	V			870			
Undervoltage protection	V _{und}	V		70%	$5 * \sqrt{2}$	*V _{mains}		
Internal filter	-	-	yes	yes	yes	no	no	
CONTROL STAGE	1				<u> </u>			
Supply voltage	VDC	V=	24 (0%+10%)					
Max. ripple	VDC _{ripple}	V	D	o not g	zo over	the rar	ıge	
Supply current	IDC	A=				0		
Drawn amperage	PDC	W	30					
Max. frequency simulator encoder output	fenc out	kHz						
Max. frequency encoder input	f _{enc in}	kHz						
EMERGENCY BRAKE								
Supply voltage	Vs	V=		24 ±10%				
Max. current	Is	A=						

Description	Symbol	Unit	Model				
Description	Symbol	Omt	HID35	HID45			
POWER STAGE							
Power supply : the drive power can be either 1-phase, 3-phase or continuous							
Nominal 3-phase voltage	V _{mains}	V~	$200 \div 4$	80 ±10%			
Nominal 1-phase voltage	V _{mains}	V~	$200 \div 2$	77 ±10%			
DC voltage	V _{dc}	V=	282 ÷ 6	78 ±10%			
Frequency	$\mathbf{f}_{\text{mains}}$	Hz	506	0 ±5%			
Continuous service installed load	S	kVA	22,8	28,5			
Switching frequency (selectable)	f_{sw}	kHz	4				
Default switching frequency	f _{def}	kHz	2	1			
Nominal output current	Icont	Arms	35	45			
Peak output current 2s	Ipeak	Arms	70	90			
Current derating with $f_{sw} > f_{def}$	Kf	p.u.	-	-			
Current derating with V _{mains} >440V	Kv	p.u.					
Output frequency	f _{out}	Hz	50)0			
Power stage loss	Ploss	W	490	540			
Internal fan capacity	Q	m ³ /h	260				
Braking resistor	Rb	Ohm	13				
Continuous internal braking power	Pb cont	W	400				
Prolying now or nook 700Vdo		W	480	000			
Braking power peak 790Vdc	Pb peak	S	0,1				
Continuous power	Pout	W	See dia	agrams			
Overvoltage protection	V _{ovl}	V	87				
Undervoltage protection	V _{und}	V	$70\% * \sqrt{2} * V_{mains}$				
Internal filter	-	-	no	no			
CONTROL STAGE							
Supply voltage	VDC	V=	24 (0%.	+10%)			
Max. ripple	VDC _{ripple}	V	Do not go ov	ver the range			
Supply current	IDC	A=	~ 4				
Drawn amperage	PDC	W	30				
Max. frequency simulator encoder output	fenc out	kHz	400				
Max. frequency encoder input	fenc in	kHz	400				
EMERGENCY BRAKE							
Supply voltage	Vs	V=	24 ±	10%			
Max. current	Is	A=		2			

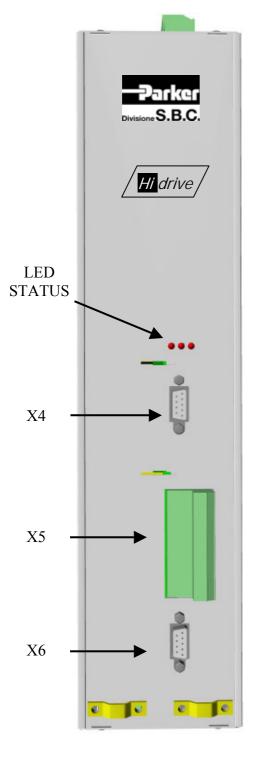

5 MOUNTING

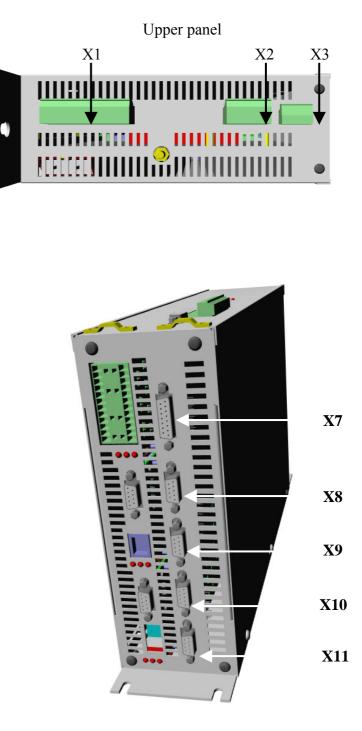
5.1 Dimensions and weights


5.2 Fastening

Fasten the drive in the cabinet using the mounting holes on the mounting plate (see figure below).

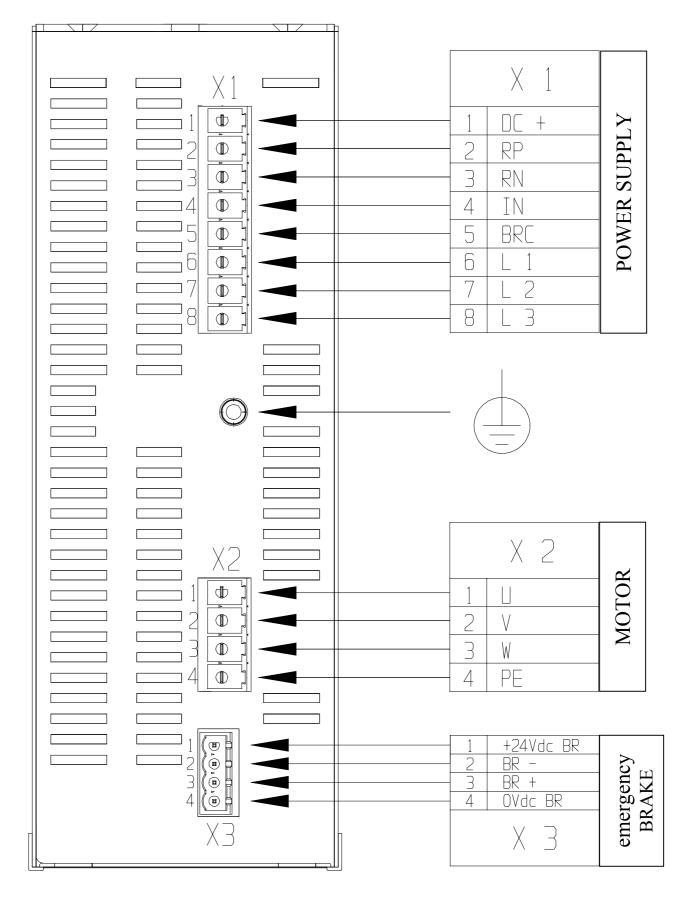
	HID2-HID5-HID8	HID16-HID25	HID35-HID45	
\mathbf{A} – frame width	87mm	122mm	227mm	
\mathbf{B} – plate width	80mm	115mm	219mm	
C – spacing	62mm	62mm	150mm	
D	9mm	26.5mm	34,5mm	
Ε	9mm	26.5mm	38,5mm	


5.3 Mounting instructions

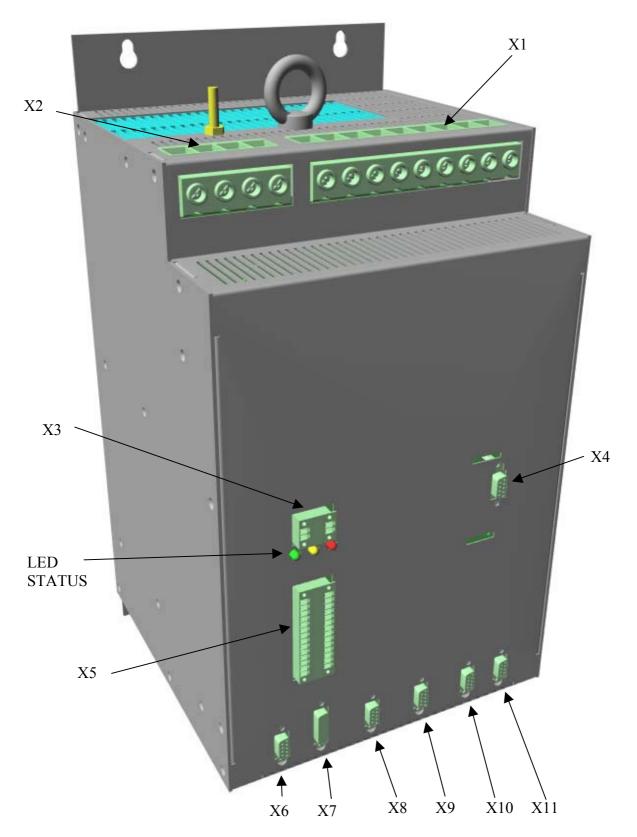

6 ELECTRICAL CONNECTIONS

6.1 Connector design and pin-out

HID2 - ... - HID25

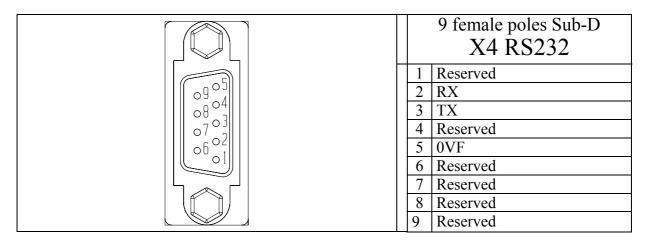


Front panel



Lower panel

Upper panel.

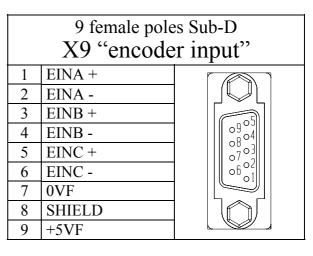

HID35-HID45

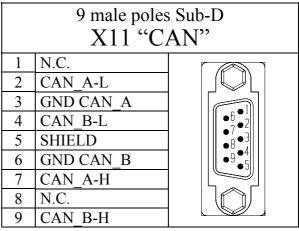
Terminal block X1						
]	l		DC+	
			2		RP	
			3		RN	
		2	1		IN	
		1	5		BRC	
		(6		L 1	
			7		L 2	
			8			L 3
		Ç)	PE		
			nal block X2	<u>c</u>		
]	1	U		
	\mathbf{D}	2	2		V	
	\mathbf{D}		3		W	
		2	1		PE	
Terminal block X3						
24 14-	1			2		
24 Vdc	1			3	BR+	
0 V	4		\@{	2	BR-	

page 21 of 155

For HID2-...-HID25 front panel, for HID35-HID45 front panel

Terminal block							
0VQ drive power supply	15	15			1	1	– SR drive enabled
+24V drive power supply	16	16 17			2	2	+ SR drive enabled
	17	18			4	3	SC B
	18	19			5	4	SC A
	19	20			b	5	IN 4
GND (DIGITAL)	20	21			7	6	0VA
OUT 1	21	22			8	7	MON 2
OUT 0	22	23			y	8	MON 1
VDC (DIGITAL)	23	24		}@ {	10	9	0VA
GND IN	24	25)@¦∥		10	– AX
IN 3	25	26) © ¦]	12	11	+AX
IN 2	26	27			13	12	0VA
IN 1	27	28	≥ €∬	∑® ∦	14	13	- REF
IN 0	28		. <u> </u>			14	+ REF


	9 female poles X6 "resolv	
1	PTC	
2	A GND	
3	ECC -	
4	SIN -	
5	COS -	
6	PTC	
7	ECC +	
8	SIN +	
9	COS +	


	15 female poles Sub-D					
	X7 "sinco	os"				
1	PTC					
2	SHIELD					
3	A GND					
4	SENSE +	1508				
5	CLK +	0 07				
6	DATA +					
7	B +]				
8	A +					
9	PTC					
10	Ve					
11	SENSE -					
12	CLK -					
13	DATA -					
14	B -					
15	A -					

For HID2-...-HID25 lower panel, for HID35-HID45 front panel

	9 female poles Sub-D				
	X8 "RS422/485"				
1	TX422 +				
2	RX422 +				
3	TX422 -				
4	RX422 -	0 ⁹ 0 ⁵ 0804			
5	SHIELD	0703			
6	Termination				
7	N.C.				
8	N.C.				
9	0VF				

	9 male poles Sub-D X10 "encoder output"				
1	EOUTA +				
2	EOUTA -				
3	EOUTB +				
4	EOUTB -	$\bullet 6 \bullet 2$			
5	EOUTC +				
6	EOUTC -	●9 ^{●4}			
7	0VF				
8	Reserved				
9	Reserved				

6.2 Cable lengths and sections

Model	Model		HID5	HID8	HID16	HID25	HID35	HID45
MOTOR	Section	1.5mm^2	1.5mm^2	2.5mm^2	4mm^2	6mm ² (AWG8)	8mm^2	12mm^2
(X2)	Tightening torque	· /	$\begin{array}{c c} (AWG14) & (AWG14) & (AWG12) & (\\ \hline 0.5 - 0.6 & Nm & (M3) \\ \hline \end{array}$		(AWG8) (AWG8) 1.2 Nm (M4)		(AWG8) (AWG6) 2.5 Nm (M5)	
NETWORK	Section	2mm ² (AWG14)	2mm ² (AWG14)	2.5mm^2 (AWG12)	4mm ² (AWG8)	6mm ² (AWG8)	8mm ² (AWG8)	12mm^2 (AWG6)
(X1)	Tightening torque					.2 Nm (M4) 2.5 Nm (M		· /
SignalSection $0.22 \div 1 \text{ mm}^2$ (AWG16)								
(X5)	Tightening torque	0.22 – 0.25 Nm (M2)						
Emergency	Section	1 mm ² (AWG16)					m^2 G16)	
brake (X3)	Tightening torque	0.5 – 0.6 Nm (M3)					0.22 - 0 (N	
Max. motor cable length		60 m						
Max cable capacity		< 150 pF/m						

Chose a cable for flexible or static installation depending on the application. See the table below for cable sections:

All signal cables must have a minimum section of 0.22 mm^2 .

The resolver cable must consist of 4 individually shielded twisted pairs protected by a shield. The conductor-conductor capacity for the length used cannot exceed 10 nF and the section cannot be less than 0.22 mm^2 . The maximum length is 60 m.

The motor cable must be shielded.

The cables used for analogue signals must be shielded twisted pairs.

Shielded cables are also recommended for digital inputs and outputs.

6.3 **Protections**

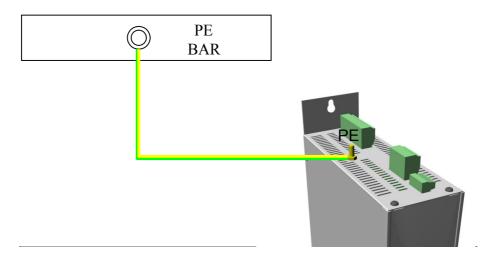
The drive has no protections against overloads towards the mains. The fuses at the drive power network must be sized as follows:

Model	HID2	HID5	HID8	HID16	HID25	HID35	HID45
Fuse size on AC power supply network	6A rit	10A rit	16A rit	20A rit	50A rit	50A rit	75A rit
Fuse size on VDC control power supply				3.15A			

A thermo-magnetic switch can be used instead of fuses with the same effectiveness.

Model	HID2	HID5	HID8	HID16	HID25	HID35	HID45
AC	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
Power	FWP10A14F	FWP20A14F	FWP30A14F	FWP-50B	FWP-60B	FWP-80B	FWP-100B
	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-
supply	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut
(3X)	A70P10-1	A70P20-1	A70P30-1	A70P50-4	A70P60-4	A70P80-4	A70P100-4
	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
Braking	FWP10A14F	FWP20A14F	FWP20A14F	FWP30A14F	FWP-35B	FWP-80B	FWP-80B
•	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-
(2X)	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut
	A70P10-1	A70P20-1	A70P30-1	A70P30-1	A70P35-1	A70P80-4	A70P80-1
	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann	Bussmann
DC Bus	FWP10A14F	FWP20A14F	FWP30A14F	FWP-50B	FWP-60B	FWP-80B	FWP-100B
	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-	Ferraz-
(2X)	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut	Shawmut
	A70P10-1	A70P20-1	A70P30-1	A70P50-4	A70P60-4	A70P80-4	A70P100-4

See the following table to use fast fuses according to UL Standards:

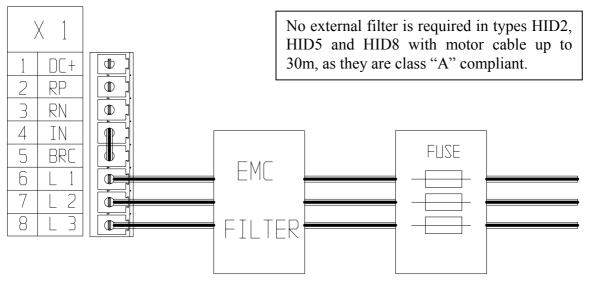

6.4 PE (Protective Earth) connections

It is necessary to minimize the length of the individual cables to be grounded. For this reason we recommend that a grounding bar be placed as close as possible to the frequency converters.

The grounding bar must be a copper bar and must be installed in contact with the cabinet metal frame. The table shows the minimum dimensions depending on length.

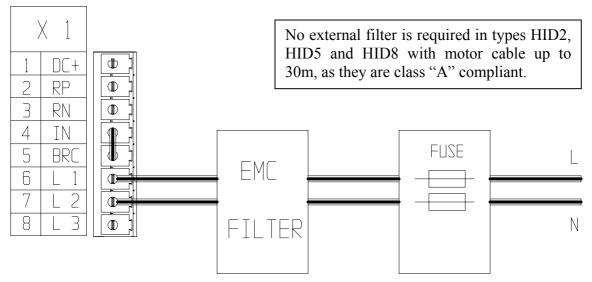
0	Width	Thickness for HID225	Thickness for HID35,45
(m)	(mm)	<i>(mm)</i>	<i>(mm)</i>
0.5	20	6	8
1	40	6	8
1.5	50	6	8

To connect the converter to the grounding bar use either one cable with a minimum section of 10 mm^2 , or two cables with the same section as power cables. Use copper grounding cables.

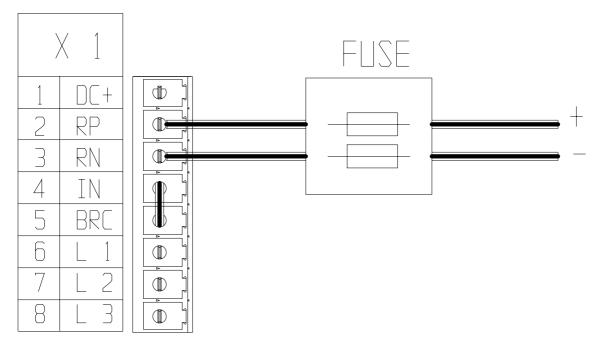


6.5 **Power stage supply connection**

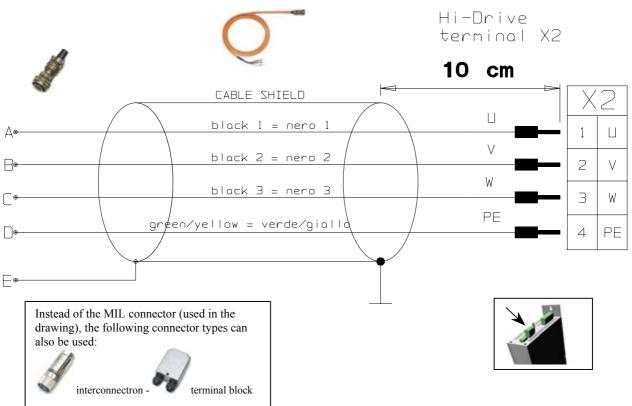
The converter can be used only in grounded TT and TN industrial networks, suitable for use on a circuit capable of delivering not more than 5000 RMS symmetrical amperes, 480V maximum.


Do not use in ungrounded networks or in networks with asymmetrical grounding (IT).

6.5.1 Connection to AC 3-phase network


For HID35 and HID45 connect the grounding cable in 9 pin of X1.

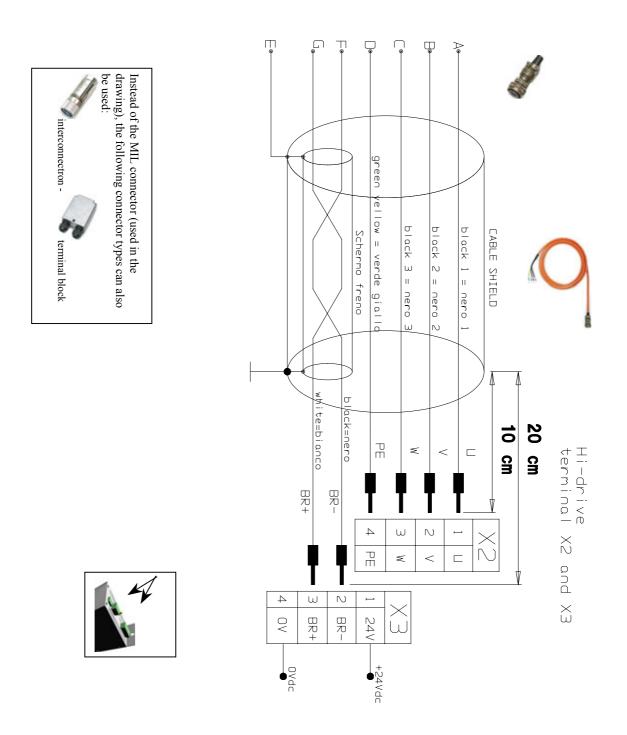
6.5.2 Connection to AC 1-phase network


For HID35 and HID45 connect the grounding cable in 9 pin of X1.

6.5.3 Continuous supply connection

For HID35 and HID45 connect the grounding cable in 9 pin of X1.

6.6 Motor connection (MIL connector)

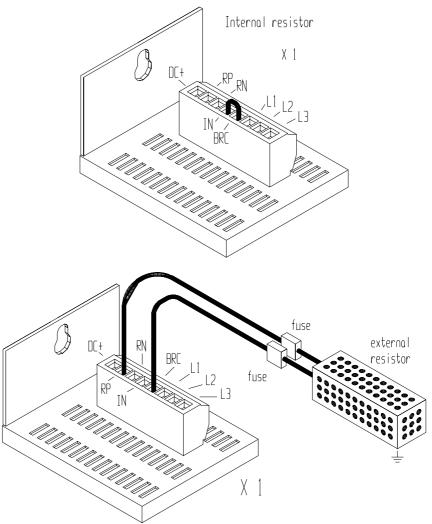

6.6.1 Motor without emergency brake

6.6.2 Motor with emergency brake

Terminal block X3 requires a dedicated 24VDC to terminals 1 and 4. Do not use the same supply of the control stage. Terminals 2 and 3 control the brake through a static relay.

WARNING

Controls the output controlling the emergency brake of terminal block X3 (pin 2 and 3), managed as a command ON/OFF from drive with internal bit (b42.8). The brake block-release function in all operating conditions must be performed by the user.

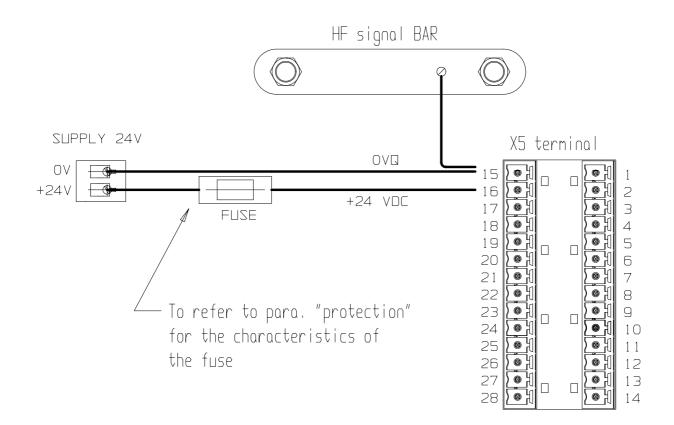

6.7 External braking resistor connection

The converter is equipped with an internal braking resistor (see "technical data" section). An external braking resistor can be used if there's a higher power to be dissipated.

The external braking resistor must be equal in size to the internal resistor. Install a bipolar thermo-magnetic switch (or a fuse pair) between the resistor and the converter.

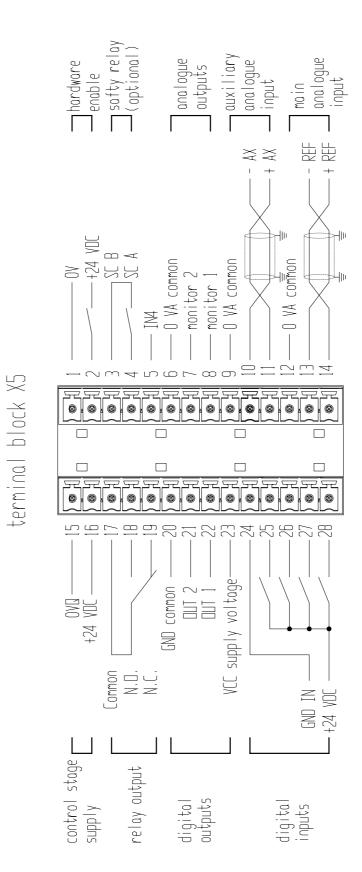
The minimum connection cable section must be the section of motor cables (see "Cabling" section). It is necessary to minimize the length of connection cables, that shall in no event be **over 3 metres.**

In order to complete the connection, refer to the pin-out of connector X1: remove the jumper between terminals IN and BRC, then connect the external resistor between terminals RP and BRC.

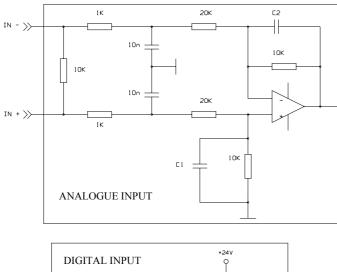


During operation, the external resistor reaches high temperatures. Let the external resistor cool down before performing any operation on it.

6.8 Control stage supply connection


IMPORTANT

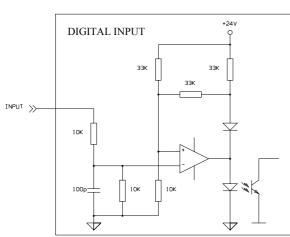
The drive electronics - including powering-up and switch-off operations - is supplied at 24VDC.

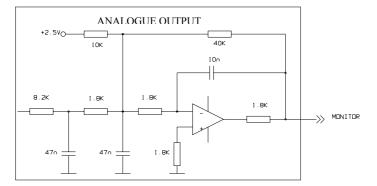


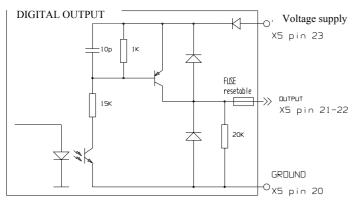
The 24V power supply must be exclusively dedicated to the drive power supply . Sharing the power supply with other devices (e.g. brakes, electro valves, etc.) could cause malfunctions.

6.9 Analogue and digital I/Os connection

page 31 of 155

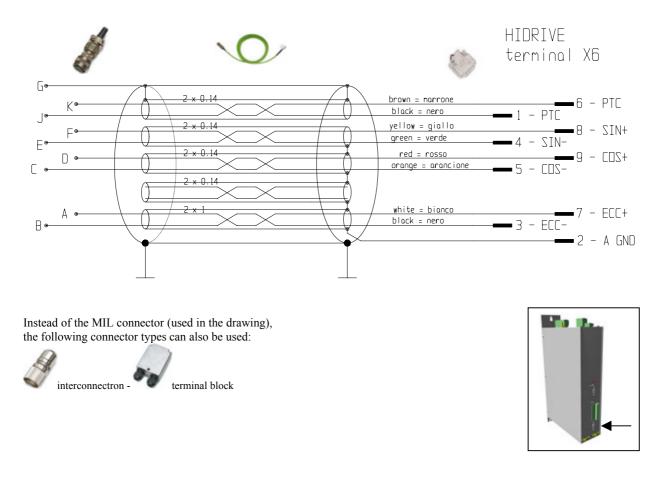

Main analogue input:					
Number	1				
Range	±10V differential				
Input resistance	8.61kΩ ±5%				
Resolution	14 bit + sign				
Maximum frequency	2 kHz				
Auxiliary analogue inp	Auxiliary analogue input				
Number	1				
Range	±10V differenziali				
Input resistance	8.61kΩ ±5%				
Resolution	10 bit				
Maximum frequency	800 Hz				

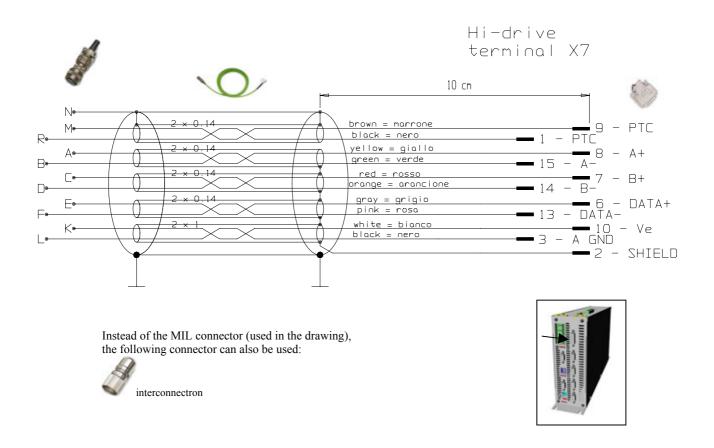

Digital i	nputs
Number	5 opto isolate
High voltage range	15 ÷ 24V
Low voltage range	0 ÷9V
Input resistance	20kΩ±5%
Reaction time	=2.5µs
Type of driving required	PNP


Analogue o	outputs
Number	2
Range	±10V
Output resistance	1kΩ
Resolution	10 bit + sign
Max. output current	1.5mA
Short circuit protection	Yes
Overload protection	Yes

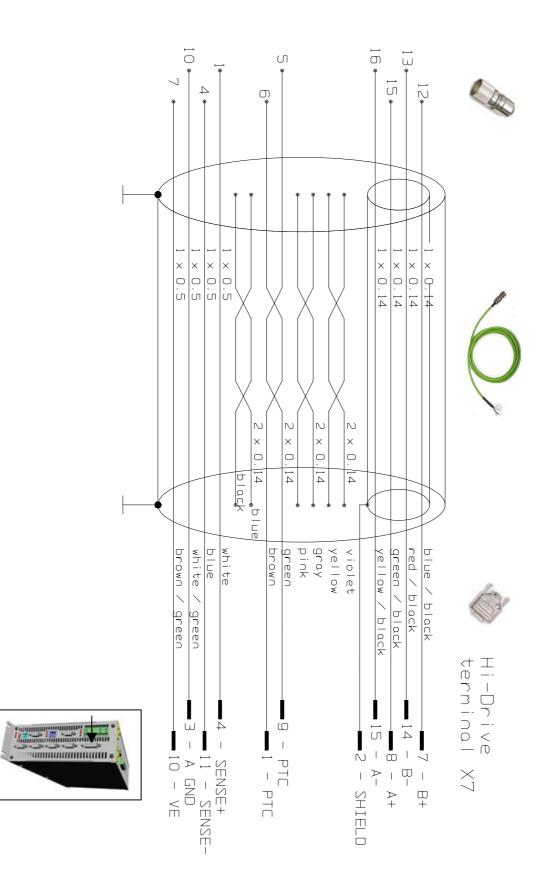
Digital outputs				
Number	2 opto isolate			
Туре	PNP open collector			
External digital power supply	5 ÷24Vdc			
Rise time	=200µs			
VH	V _{power} – 1.0 V			
VL	-0.5 ÷ 1.5V			
Max. output current	100mA			
Short-circuit protection	Yes			
Overload protection	Yes			

Relay output				
Number	1 (NO - NC)			
Voltage	24V			
Max current	1A			

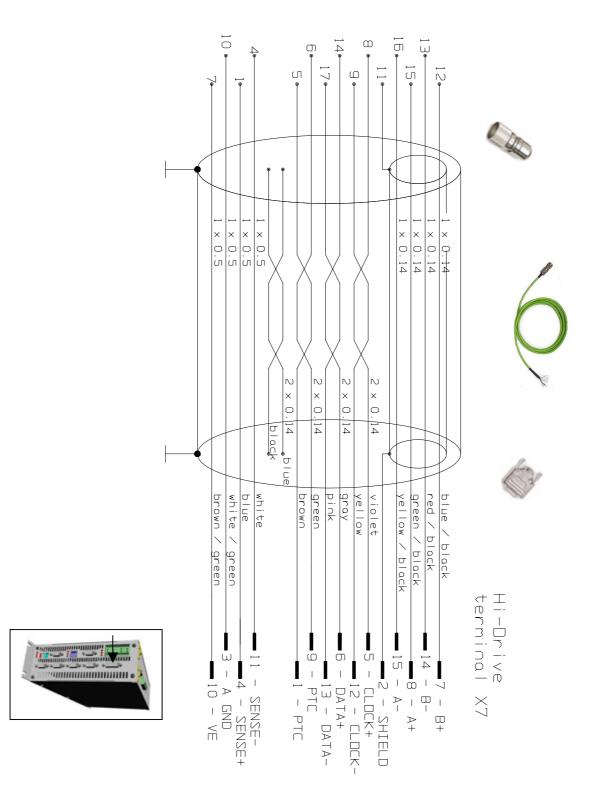



6.10 Feedback connection

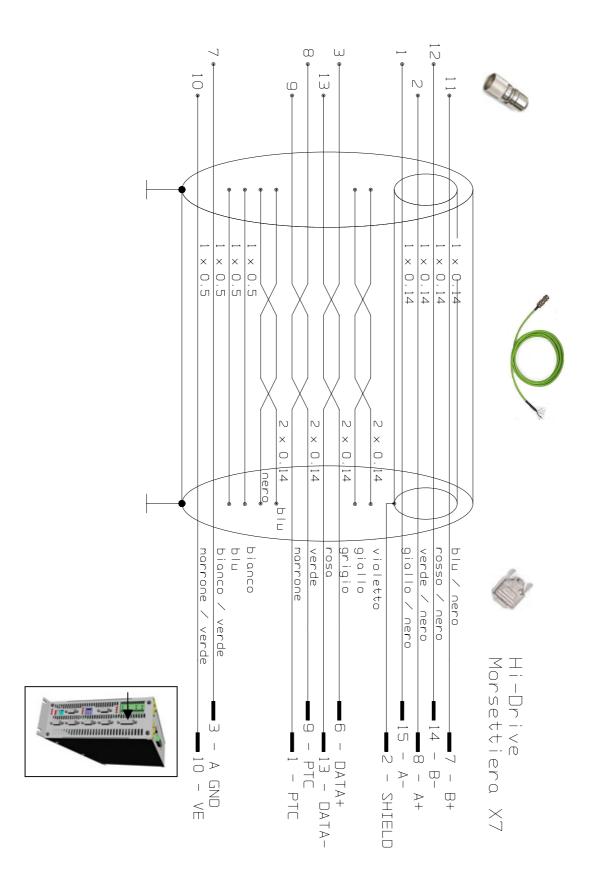
6.10.1 Resolver

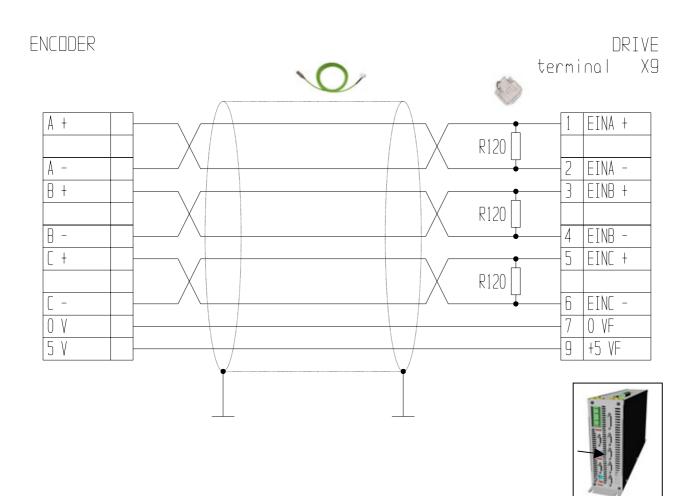


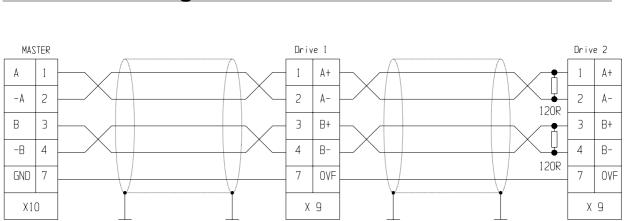
When the resolver is connected, no incremental encoders can be used on connector X7.


6.10.2 Incremental encoder

6.10.3 Sinusoidal encoder


6.10.4 Sinusoidal encoder + EnDat

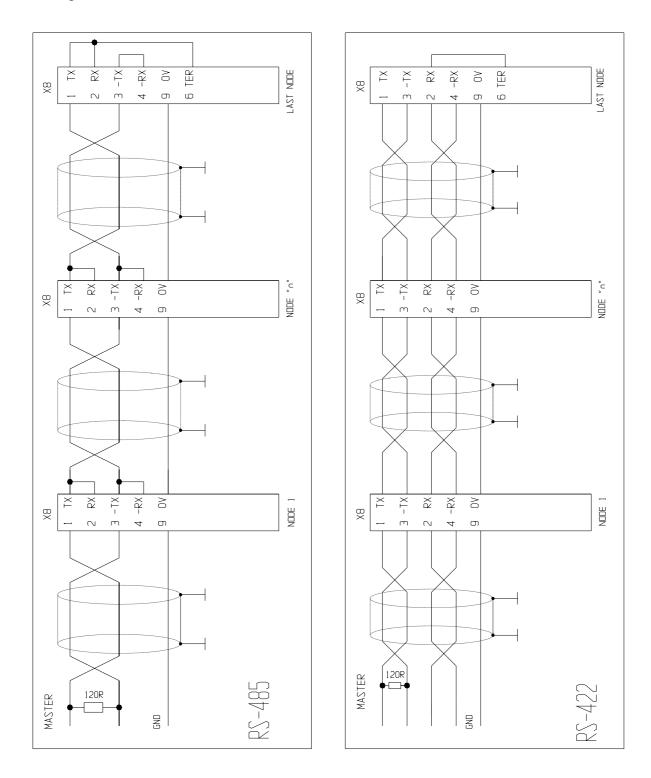

As far as the cable is concerned, you may use a Heidenhain cable or one with the same features.


Cables without "SENSE" must not be longer than 20 metres, cables with "SENSE" shall have a maximum length of 60 metres.

6.10.5 Sinusoidal encoder + Hiperface

6.11 Auxiliary encoder input connection

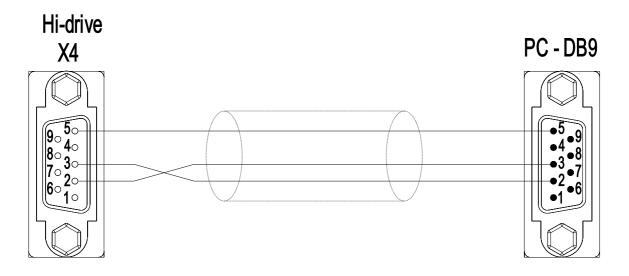
6.12 Connecting converters to the electrical shaft


The example diagram above shows the connection of two converters to the electrical shaft with a master, but the link could be extended to several converters connected in series.

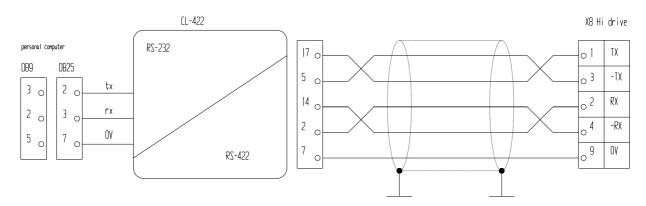
The line termination resistors must be connected to the last converter. The master can be either an encoder or an encoder simulator of another converter. However, the master encoder signal must be a differential 5V RS-422 signal.

If the master is a Hi-drive type converter, you can connect up to 32 converters to the electrical shaft by using the same signal of the simulated encoder (standard RS-485).

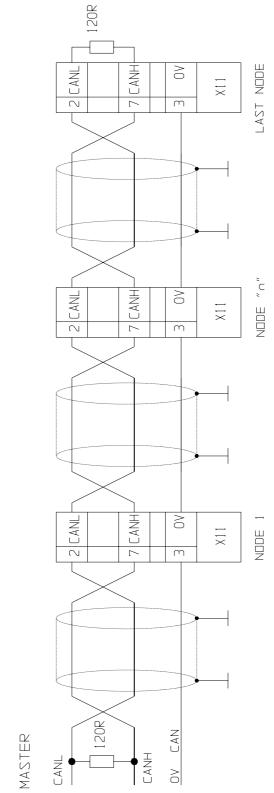
6.13 Serial connection RS422/RS485

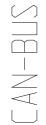

The serial link can be configured as either RS-422 or as RS-485 depending on how the connection is made. If there are several converters connected to the same line, only the last node must be terminated as shown in the diagram below. The two configurations are shown in the diagram below.

6.14 Serial connection RS232


6.14.1 Without converter RS232/RS422

The diagram below shows the connection between drive and PC by a Hyperterminal link based on an ASCII protocol on the serial port RS232 (X4 of the drive):


6.14.2 With converter RS232/RS422


The diagram below shows the connection between drive and PC by a serial link RS232/RS422 based on S.B.C. protocol (X8 of the drive):

6.15 CAN Bus connection

A CanBus interface based on the physical layer ISO/DIS11898 is included on the converter. The Data link layer is the full CAN version 2.0 part A (ID 11 bit).

6.16 Electro-magnetic compliance

HID2, HID5 and HID8 converter types with motor cable up to 30m do not require an external filter as they are class "A" compliant.

In order to meet the requirements of EMC product standards, the drive must be installed in strict compliance with the instructions below.

Because of strong PWM voltage fronts caused by the converter, high capacitive currents can sometimes circulate through couplings in the grounding systems (conductive noise). High frequency disturbances are also possible, especially from motor cables, in the form of radiated emissions.

Radiated and conductive disturbances can be reduced or prevented through grounding, shielding and filtering, so as to reduce both the conductive interference in the cables and the return conductive interference to the source (frequency converter) by using paths with the lowest possible impedance. In this way other systems connected to the same electrical line are protected effectively and the frequency converter will also be protected from the interference of other systems.

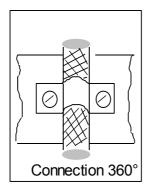
Basically, protection is essentially based on grounding, shielding and filtering.

6.16.1 Grounding

Two different grounding systems are used in the electric cabinets where the converters are usually installed:

- The EMC grounding, or HF (high frequency) reference, which is the <u>uncoated</u> metal surface where drives and filters are installed.

- The safety or PE (protective earth) grounding according to EN60204-1.


Install converter, network filter, 24V power supply etc. on the metal surface so as to ensure the maximum possible electric contact (HF connection) between the zinc-coated steel sheet and the converter's (rear) mounting plate.

6.16.2 Connection cables and shielding

Except the mains-filter cables, all other power and control cables must be shielded and kept separated (min. distance between cables 20 cm). Where control cables must cross power cables make sure they are at an angle as near 90° as possible.

Shielded cable screens shall be free and grounded on a copper bar by means of a connection provided with cable gland (360° connection) as shown in the drawing, in order to ensure an appropriate conductivity.

The motor cables and the power cables can never run parallel.

Usually the screen is connected on both ends. In some cases, however, the control cable screen (resolver, encoder, I/O, low voltage power supply, serial link) may be connected only on one end when the current in the screen causes noises to the shielded cable signal.

The input cable must be connected to the PE grounding by means of a screw connection so as to ensure a proper contact between the screen and the grounding.

The power section (converter) and the control section (PLC or CN) must be kept separated by a division in the metal base. Connect the panels in the electric cabinet by means of a copper strap.

6.16.3 Filters

External mains filters must be installed in addition to the drive's internal filters (no external filter is required in types HID2, HID5 and HID8 with motor cable up to 30m, as they are class "A" compliant).

The mains filter must be installed as close as possible to the converter and on the same panel as the drive, ensuring a large contact surface with the electric cabinet or with the mounting platform.

If the distance is over 30cm, the filtering effect decreases and a shielded cable must be installed between the filter and the converter.

The filter ground lug must be connected to the ground bar with a connection as short as possible.

The converter-filter connection cable length should not be over 30cm in order to maximise efficiency.

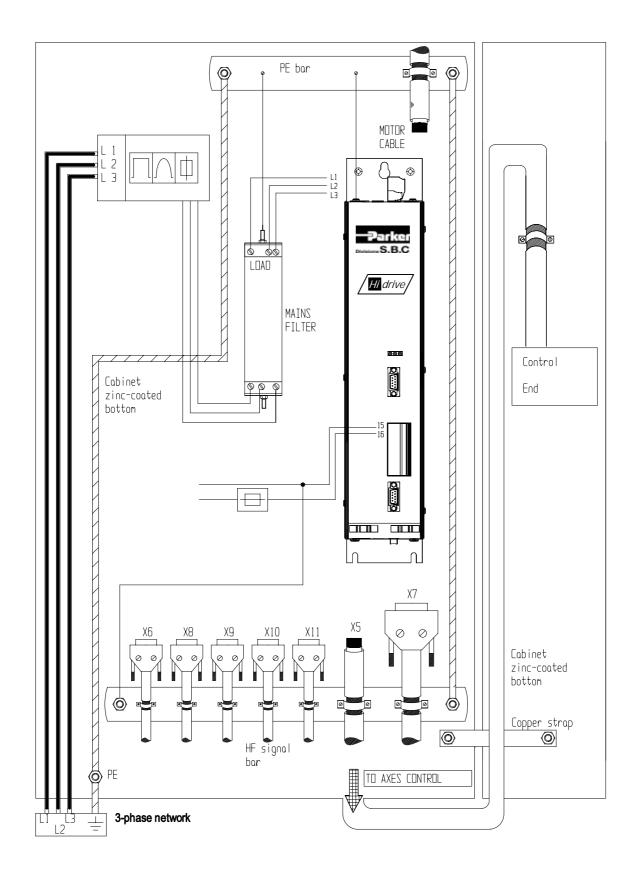
6.16.4 General recommendations on cables

Never route noise-emitting cables in parallel with "clean" cables

Never route cables in parallel, especially near the filter (ensure sufficient distance)

Never route cables in loops (cables should be kept as short as possible and be close to the common potential).

It is particularly important to keep mains cables away from motor cables. If the motor is provided with emergency braking, keep the brake connection and power cables away from the other cables (resolver and signal).


6.17 Cabling general layout

The following drawings show the details of the cabling layout, with particular attention to the grounding of shielded cables.

The electric cabinet bottom must be electrically conductive , e.g. zinc-coated. Strip off any paint coat to ensure contact.

The grounding bar must be in contact with the cabinet bottom or ensure an excellent electric connection and it must NOT be insulated.

<u>Route power cables away from signal cables</u>. The 24V input power cable must be shielded as well.

*Install the PE (Protective Earthing) grounding bar together with the HF bar on insulated pillars, in order to prevent contact with the zinc-coating bottom. Connect the two bars as shown in the diagram.

Signal cables can be grounded either by means of a separate (HF) bar or directly connecting the (metal) cable glands to the cabinet bottom (in this latter case, ensure that the PE bar is in contact with the cabinet zinc-coated bottom). *The above diagram is to be considered as an overall view.

7 STATUS LEDS

The converter is equipped with 3 led indicators.

When power is applied to the drive (24 VDC), if the drive's electronics is working, the yellow and green leds come on.

The third led (red) provides converter status information as listed below:

- **if it is off,** the converter is shut off without active alarms.
- if it is on, the converter is enabled. the drive is in RUN mode

IMPORTANT

- if it blinks with a pause after two series of blinks, the converter is disabled and an alarm is active. The active alarm can be identified by counting the number of blinks between the two pauses.
- if it blinks quickly and continuously, the I²t command is active and the converter is still enabled.

8 POWER SUPPLY MODE

8.1 "Low" voltage power supply

This procedure is for those situations in which the operator needs to work in close proximity to the machine in a situation which could be potentially hazardous. In these conditions, the operator must move the axes with a drive power supply voltage lower than the nominal rating (from 40 to 180V~, and from 57 to 255 VDC), so that the maximum allowable speed of the axes is also lowered.

The motor is actually enabled approx.120ms after closing the contact that overrides the holding charge resistance. This contact is activated when the internal continuous voltage in the drive gets over 40VDC, provided that there aren't any active alarms and that hardware and software enabling commands are available.

In the same way, an under voltage alarm is generated when the voltage level falls below 40VDC.

The undervoltage fault automatic reset command is not active in this mode and b42.3 and b42.4 have no significance.

Caution:

the switch between low voltage and high voltage modes <u>is potentially</u> <u>dangerous to the drive</u>. Always switch between modes with the <u>drive disabled</u> and follow these instructions step by step.

- Low voltage to nominal operating voltage sequence.
 - a. Disable the drive. Wait 200ms.
 - b. Change the voltage from low to nominal.
 - c. Set bit b40.10 to 0
 - d. Wait 200ms.
 - e. Enable the drive. The drive will be enabled after about 120ms.
- o Nominal operating voltage to low voltage sequence.
 - a. Disable the drive. Wait 200ms.
 - b. Set bit b40.10 to 1
 - c. Change the voltage from nominal to low.
 - d. Wait 200ms.
 - e. Enable the drive. The drive will be enabled after about 120ms.

8.2 "High" voltage power supply

In "high" voltage operating mode (b40.0=0), the converter can supplied as follows:

- AC 3-phase network (200...480 ±10%) Set b39.0=0 (default). The converter can automatically detect the power supply voltage rating and adapts internal operating parameters accordingly. When the mains voltage is >440VAC, b41.13=1 and output current is de. When one of the power supply phases is missing, b42.4=1.
- AC 1-phase network (200...277 ±10%) Set b39.0=1 and set the peak nominal value of 1-phase supply (v2*V_{phase-neutral}) in Pr21. Save, switch off and on again the converter.

With both modes of AC power supply, when parameter b42.3=0 the input power supply is on. In case of power loss the bit is set to one, anticipating the converter's "under voltage" alarm that is based on continuous voltage.

Continuous (288...678 ±10%)
 Set b39.0=1 and set the nominal value of continuous voltage in Pr21. Save, switch off and on again the converter.

The automatic reset of "under voltage" undervoltage alarm can be forced by b39.8=1 with any kind of power supply.

9 START-UP

In Its basic configuration, Hi-drive can control both synchronous permanent magnet motors (brushless) and asynchronous induction motors. The setting of Pr31 can select either of the following:

- Pr31=0 synchronous motor (default setting)
 - Pr31=1 asynchronous motor

The drive is supplied with default factory parameter settings.

See the following chapters for use and start-up.

9.1 Setting the default parameters

When you carry out a default procedure, all factory parameters are changed and any previously entered value is lost. In order to carry out the procedure, go through the steps below:

- supply 24VDC power to the drive (X5 pin 15 and 16);
- disable drive hardware **b41.5=0**;
- set the pico-PLC in stop, **b39.13=0**;
- command **b42.12=1**, in order to load the default parameters;
- save the data by commands **b42.14** and **b42.15** (the drive must be disabled);
- Save, switch off and on again the drive.

9.2 Selection of motor type

The first time the converter is powered up, or following a default command, the drive indicates a "Def" condition (alarm Pr23=15).

In order to leave the drive's initial condition, the operator shall have to input the motor data. The parameters defining motor types are as follows:

Pr29	Number of motor poles	N.
Pr32	rated motor speed	r.p.m.
Pr33	rated motor current (ex. 2.5A, write 2.5)	Ă
Pr46	phase-phase motor resistance (ex. $1,8\Omega$, write 1.8)	ohm
Pr47	phase-phase motor inductance (ex. 2.6mH, write 2.6)	mΗ
Pr60	number of resolver poles	N.
ith asynchronous	motors, the values above shall be supplemented with	the follow

With asynchronous motors, the values above shall be supplemented with the following parameters:

Pr45	base speed	r.p.m.)
Pr48	slip	r.p.m.	
Pr49	magnetizing current	Ă	> <u>Only asynchronous motors</u>
Pr32	motor limit speed	r.p.m.	J

After setting the parameters that identify the motor, the operator shall enter a data save command, **b42.15** (with drive disabled, b41.5=0). The drive will set the values of parameters Pr2, Pr3, Pr16, Pr17, Pr18 and Pr19 through its internal logic. The automatic calculation of the above listed parameters is performed only of the drive is in the default condition (alarm 15).

9.3 Changing motor data

After having entered a data save command, no other changes shall be made to the motor parameters . In order to change the entered parameter values (new motor), enter command **b42.1**. The drive shall return to its default condition and changing motor data shall be enabled again. Repeat the data save procedure with command **b42.15** (with drive disabled) if you want to recalculate parameters Pr2, Pr3, Pr16, Pr17, Pr18 and Pr19 with the new motor data.

9.4 Setting feedback

A key feature of Hi-drive is the ability to cope with several types of feedback, that can be used simultaneously both as speed feedback and as position feedback, depending on the connection and on parameter settings.

Speed and position feedback connections use three different connectors:

- 1. A feedback, connection on input X6.
- 2. B feedback, connection on input X7.
- 3. C feedback, connection on input X9.

9.4.1 A feedback, input X6.

Input X6 can be used to link:

Resolver

The input is dedicated to resolver read only. When this input is used, it must be identified as speed feedback. In case of a space operating mode, the resolver can be also used as space feedback.

9.4.2 B feedback, input X7.

Input X7 can be used to link:

- Encoder sincos + EnDat interface
- Encoder sincos
- Encoder less wiring
- Line drive incremental encoder RS422

Signal RS422 on this port does not require the line to be closed by resistors, as these are already present inside.

When the resolver is connected to port X6, do not connect Less Wiring encoder and incremental encoder to port X7.

Input X7 has a variable power supply with either 5.8 or 12V voltage, selectable through parameter settings. 5 and 8V voltage levels can be adjusted through a feedback from a sensing pair cable to compensate for any voltage drop in the cables. When voltage is set at 12V, the feedback is internal and any voltage drop in the cable cannot be compensated. Bit b64.0 indicates whether the sensing function is active; if it is not, the set voltage is adjusted in an open loop.

9.4.3 C Feedback , input X9

Input X9 can be used to link:

• Line drive incremental encoder RS422

The connection of an encoder to this input requires line closing resistors to be provided, as shown in the wiring diagram ("Auxiliary encoder input"). Connector X9 has a 5V fixed input voltage insulated for the encoder.

9.4.4 Speed feedback configuration

In order to set the speed loop, select examples according to the table below:

	Mode desc	cription		No. of pulses revolution	Input
Resolver	b65.15=0	b65.14=0	-	none	X6
SinCos + EnDat	b65.15=0	b65.14=1	Pr62=0		
SinCos	b65.15=0	b65.14=1	Pr62=1		X7 V _{dc} Encoder power
Less Wiring	b65.15=0	b65.14=1	Pr62=2	Pr58	V dc supply 5 b65.7=0 b65.6=0 8 b65.7=0 b65.6=1
incremental Encoder	b65.15=0	b65.14=1	Pr62=3		12 b65.7=1 b65.6=0
SinCos + Hiperface	b65.15=0	b65.14=1	Pr62=7		
incremental Encoder	b65.15=1	b65.14=0	Pr63=3	Pr59	X9

Before selecting the system it is necessary to set the input voltage of the connected encoder.

The selection of power input voltage is only performed at the drive's start up. In order to enable the selected voltage, save the parameters, then switch off and on again the drive. If you don't, the previously selected voltage shall be effective until the next power-up.

9.4.5 Position feedback configuration

The same sensors used in peed feedback can be also used for position feedback.

The position loop feedback resolution is not fixed but can be controlled by parameter settings. Parameter Pr169 performs this function and can have a value between 2^{12} and 2^{20} bit per motor revolution.

The selection of position loop sensors and of the relevant resolutions can be made following the table below:

The space in the drive is managed as a double word, with $a \pm 2^{31}$ range. As a consequence, the maximum value in motor revolutions for absolute systems will be:

Mode description			No. of pulses revolution	Input	
Resolver	b170.15=0	b170.14=0	-	none	X6
SinCos + EnDat	b170.15=0	b170.14=1	Pr62=0		
SinCos	b170.15=0	b170.14=1	Pr62=1		X7 V _{dc} Encoder power
Less Wiring	b170.15=0	b170.14=1	Pr62=2	Pr58	V dc supply 5 b65.7=0 b65.6=0 8 b65.7=0 b65.6=1
incremental Encoder	b170.15=0	b170.14=1	Pr62=3		12 b65.7=1 b65.6=0
SinCos + Hiperface	b170.15=0	b170.14=1	Pr62=7		
incremental Encoder	b170.15=1	b170.14=0	Pr63=3	Pr59	X9

$$space_{managed} = \frac{\pm 2^{31}}{\Pr 169}$$

Important. In order to prevent damage to the encoder, select the power supply voltage of the connected encoder.

The selection of power input voltage is only performed at the drive's start up. Therefore, in order to enable the selected voltage, save the parameters, then switch off and on again the drive. If you don't, the previously selected voltage shall be effective until the next power-up.

9.5 Phasing procedure

Phasing is necessary when the speed loop feedback is via incremental encoder incremental or SinCos, as these encoders do not provide the absolute positioning on the motor shaft. Phasing must be performed any time the drive is powered up.

The incremental encoder phasing does not allow to use the encoder simulator zero trace to set the external control axis to zero, since the drive encoder simulation is not provided with a fixed mechanical position in the motor revolution, but this is initialized any time a phasing command is given.

During the incremental encoder operations the motor must be halted. If this type of feedback is performed on the vertical axis, the phasing operations will be allowed only if the system is balanced, that is if the vertical axis can be stopped without braking.

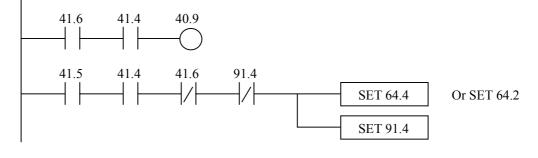
Before proceeding, consider that two phasing procedures are available, both requiring that the motor can rotate even if it is installed inside the equipment (any emergency brake disabled). Note that, in the first type of phasing procedure, the requested motor movement is larger then in type 2 phasing. In type 1 procedure a cabling test is performed This procedure is therefore recommended during the system's fine-tuning.

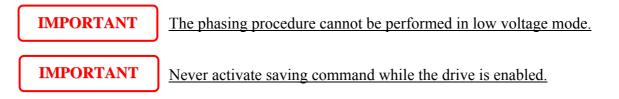
9.5.1 Type 1 phasing

It is activated by Pb94.2; the table below lists the parameters involved:

Par.	Description	Field	Range	Def.
Pb64.2	Phasing command 1. Disable software (Pb40.9=0); enable			0
	hardware (Pb41.5=1), and driver OK (Pr23=0).			
	The motor shaft is displaced two times, the second time at			
	90 electric degrees. The encoder feedback sign and the			
	number of motor poles are checked (Pr29).			
Pr58	Enter number of steps by encoder revolutions. Always	R/W	±32767	1024
	negative. Encoder connected to input X7. When b65.1=0,	Μ		
	Pr58 is written in extenso.			
	When b65.1=1, Pr58 is written exponentially		$\pm 2^{18}$	
Pr59	Enter number of steps by encoder revolutions. Always	R/W	±32767	1024
	negative. Encoder connected to input X7. When b65.2=0,	Μ		
	Pr59 is written in extenso.			
	When b65.2=1, Pr59 is written exponentially		$\pm 2^{18}$	
Pr76	Status:	R		
	0 if outcome is positive			
	2 if enable is not correct			
	3 if feedback is positive			
	4 if motor poles are incorrect (tolerance ±22.5 electric			
	degrees)			
	5 if drive is not ready (Pr23 ?0 or inrush open)			
Pb41.4	If the outcome is negative Pb41.4 is still set to zero	R		0
	(converter not OK).			
Pb41.6	Phasing outcome = 1 if procedure outcome is positive and it	R		0
	is a necessary condition for drive OK (Pb41.4)			

9.5.2 Type 2 phasing


It is activated by Pb64.4; the table below lists the parameters involved:


Par.	Description	Field	Range	Def.
Pb64.4	Phasing command 2. Disable software (Pb40.9=0); enable			0
	hardware (Pb41.5=1), and driver OK (Pr23=0).			
	At this stage the motor shall have a vibration whose duration			
	will depend on the type of motor and on the connected load			
Pr58	Enter number of steps by encoder revolutions. Always	R/W	± 32767	1024
	negative. Encoder connected to input X7. When b65.1=0,	Μ		
	Pr58 is written in extenso.			
	When b65.1=1, Pr58 is written exponentially		$\pm 2^{18}$	
Pr59	Enter number of steps by encoder revolutions. Always	R/W	± 32767	1024
	negative. Encoder connected to input X7. When b65.2=0,	Μ		
	Pr59 is written in extenso.			
	When b65.2=1, Pr59 is written exponentially		$\pm 2^{18}$	
Pr76	Status:	R		
	0 if outcome is positive			
	2 if enable is not correct (enabling procedure started by			
	Pb41.5=0 or Pb40.9=1)			
	5 if drive is in alarm or is not ready by the execution time			
	6 if parameter Pr271 deviates from its initial value by more			
	than 25 units. The calculated value can be saved. The saved			
	value will be considered as the initial value during the next			
	phasing.			
	7 if parameter Pr271 is over 200 units (maximum allowable			
	value). Recalculate value of torque.			
Pb41.4	If the outcome is negative Pb41.4 is still set to zero	R		0
	(converter not OK).			
Pb41.6	Phasing outcome = 1 if procedure outcome is positive and it	R		0
	is a necessary condition for drive OK (Pb41.4)			

If the calculated value of Pr271 at the end of the procedure is saved, on any future start up, the phasing algorithm shall be calculated based on the saved value. In so doing, if mechanical conditions are unchanged, there will be only one vibration whose duration shall be as set in Pr271.

9.5.3 Pico-PLC phasing program

After having entered all the encoder setting data, the following program can be added to Pico-PLC so that phasing is performed when the drive is enabled

9.5.4 Fine phasing

By incremental encoder feedback it is possible to enable the motor fine phasing procedure on the encoder zero point dog.

A pre-requisite for this "Fine phasing" is that the incremental encoder has been mechanically phased on the motor shaft. It is therefore essential not to disinstall the encoder, otherwise the motor-encoder assembly will have to be rephased at the control desk.

At the completion of the incremental encoder phasing procedure (type 1 or 2), a fine phasing function may be enabled on the encoder zero point dog.

The function activates at the following revolution when command b65.3=1 is entered. The status of command b65.3=0 signals that the fine phasing has been performed.

With less wiring encoder feedback, the function is performed automatically.

9.5.5 Multiturn absolute encoder phasing

With a multiturn absolute encoder, initialize the absolute position read at power up on the motor position by following the procedure below:

- position the mechanical axis on the desired machine point
- disable drive hardware b41.5=0
- set desired position in Pr69:68
- enter command b64.9 to perform the write procedure in the absolute encoder.
- After having entered a multiturn phasing command b64.9, bit b41.6, indicating "phasing ok" is set to zero. Switch the electronics off and on again to be able to perform other axis enabling procedures.

Par.	Description	Field	Def.
b170.13	Multiturn position read. (1) if multiturn absolute position is read at power up	R	0

9.6 Speed control

SPEED LOOP: The main task of a converter is to control motor speed so that it follows as faithfully as possible the speed request that is generally known as the REFERENCE. Faithfully following the reference means that the motor speed should equal the reference in static conditions and also that the motor speed is as equal as possible to the speed requested during dynamic conditions. To carry out this task, the converter must know some of the features both of the motor used and of the mechanical part attached to it. This information is communicated to the converter by the so-called ADJUSTMENT PARAMETERS.

ERROR: The error is the difference between the reference speed and the motor speed. The error size is used by the speed loop in order to evaluate the level of current to be supplied to the motor.

TORQUE: The current that circulates in the motor windings is transformed in torque, thereby allowing the motor to accelerate or decelerate.

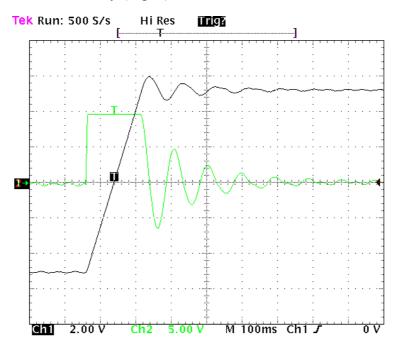
GAIN: Given the typical applications of the Hi-drive, any occurrence of the term gain in this document is referred to the rigidity of the axis, better known as STIFFNESS. In order to better illustrate what the term STIFFNESS means, let's imagine a motor controlled by a converter with a requested speed of zero. The motor shaft will appear still. However, if a torque is applied to the shaft, this will demonstrate an angle proportional to the torque applied. Suppose we apply the motor rated torque and measure the STIFFNESS in degrees. The degrees measured will be the index of the quality of the regulator as parameterized. Of course this is not the only quality index.

9.7 Speed control adjustment

WHAT IS NEEDED

In order to correctly adjust a Hi-drive converter an oscilloscope is required. A speed probe and a current probe will be connected at "*monitor output 1*" and at "*monitor output 2*" on terminal block X5 (Pin 8 and 7, whereas Pin 6 is "common").

By default, the drive monitors the Pr0 on screen 1, and Pr35 on screen 2 (see the description of key parameters and the section about programmable outputs).

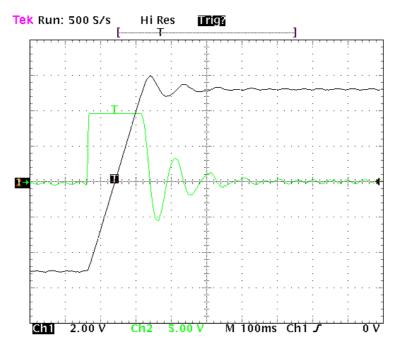

See the chapter "Inputs and outputs" for the technical features of outputs. terminal block X5"

The drive configuration software *MotionWiz* includes an "oscilloscope" function that recreates an oscilloscope via a serial link.

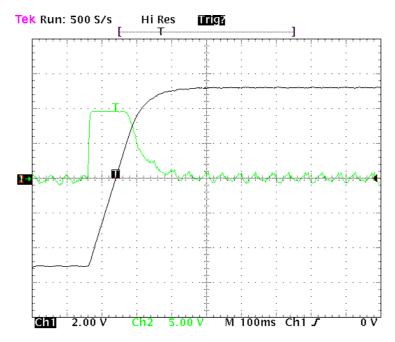
If it is not possible to use an oscilloscope, a more approximate but applicable adjustment method will be illustrated at the end of this section.

BEFORE BEGINNING

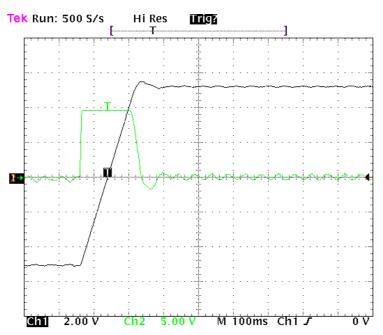
Study the diagram below carefully (Fig. 1):


This diagram shows the response of the system to a square wave speed reference. Channel 1 (Ch1) represents the speed and channel 2 (Ch2) the current of the motor.

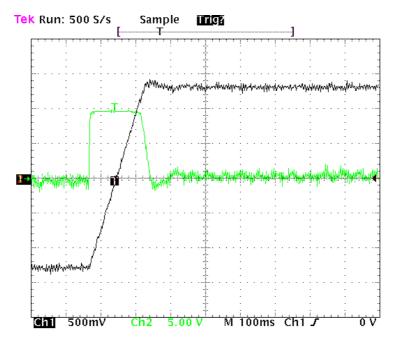
ESTIMATING Pr16

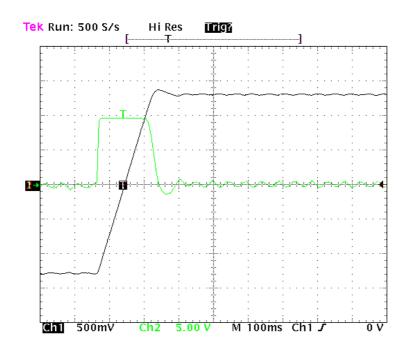

Before enabling the converter, the user should estimate the value of Pr16. The value of Pr16 is what defines the gain of the system. To convert the value of Pr16 into grades per rated torque, the formula to be used is the following: $\alpha = \frac{\text{Pr}33*100}{\text{Pr}16*\text{Ipd}} \cdot 28$ where α represents the stiffness and

Ipd is the peak current of the drive. Before using the formula, Pr33 must be set with the correct value of the rated motor current. To evaluate the correct value of α , let's consider that, if the mechanical part to be moved is stiff (non-flexible) and if there is no transmission play, the optimal stiffness would be about 4 degrees. If the mechanical part is not stiff enough, it could be necessary to reduce the gain. If the motor torque has been sized in order to obtain a strong acceleration, but the disturbing torques are very low during operation, it is possible to choose stiffness angles of 20, 30 or 40 degrees, thereby maintaining acceptable performance. If it is difficult to choose the proper stiffness angle, the user can begin with 10 degrees that is the default adjustment if a motor with the same rated current as the converter's is used. At this point, let us set Pr16 to the estimate and enable the axis with a square wave reference.

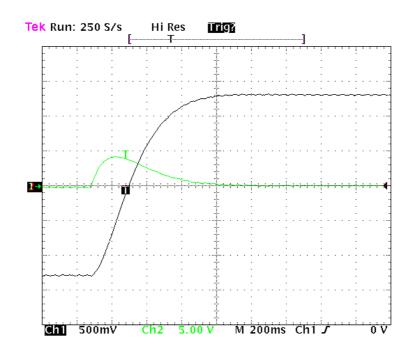

Select the width and frequency of the reference with care in order to avoid problems if the axis has a limit switch. If we look at the oscilloscope we will see that as Pr17 varies, the response will change. For decreasing values of Pr17, the response of the system will be as shown in figure 2 below:

For increasing values of Pr17, the response of the system will be similar to what is shown in figure 3 below:


The optimal value of Pr17 will be attained with a response of the system as shown in figure 4 below:



An overshoot of about 10% must be obtained. It is important that after the overshoot, an undershoot does not occur.


Once the optimal value of Pr17 has been established, we must analyze the movement of the axis. if it moves without vibrations and acoustic noise, the adjustment of the system is complete. Otherwise, we must repeat the preceding procedures with lower Pr16 values.

In some applications it is possible to reduce acoustic noise by using a higher value in Pr18. Figure 5 shows that once the optimal adjustment has been achieved, there is also an oscillation of the current that can produce acoustic noise and mechanical vibration. By raising the value of Pr18 to 3, the situation is much improved (fig. 6).

If the mechanical parts easily tend to oscillate, very low Pr16 values are recommended. In this configuration, Hi-drive typically dampens the torque request of the motor in order to avoid triggering mechanical oscillations. This configuration is shown in figure 7.

ADJUSTMENT WITHOUT INSTRUMENTATION

If you do not have an oscilloscope, you must:

- Determine the value of Pr16 as described above.
- Determine parameter Pr17 using the following formula:

$$\Pr{17} = 1488 \cdot \sqrt{\frac{153.41 \cdot \Pr{16} \cdot J_{tot}}{Nm_{peak}}}$$

where: J_{tot} is the total inertia (motor + load) expressed in kgm².

 Nm_{peak} is the available torque with the converter peak current.

- Enable the converter and use the external control to move the axis. Move Pr17 to find the value where the axis seems to move best.
- Estimate the value of Pr18 using the following formula:

$$\Pr{18} = 0.68 \cdot \frac{\Pr{17}}{\Pr{16}} \cdot 2$$

If the result is less than 1, Pr18 must be set to 1.

If the adjustment is not satisfactory, repeat the procedure with lower values of Pr16.

10 ANALOGUE AND DIGITAL I/Os

10.1 Digital I/Os

In terminal block X5 there are 5 digital inputs, combined with binary parameters $b90.0 \div b90.4$. The following table shows the details of each digital input reference:

Digital input	Binary parameter	pin	Terminal
IN 0	b90.0	28	
IN 1	b90.1	27	
IN 2	b90.2	26	X5
IN 3	b90.3	25	
IN 4	b90.4	5	

In the same X5 terminal block, there are 2 digital outputs combined with binary parameters:

Digital output	Binary parameter	pin	Terminal
OUT 0	b91.0	22	V5
OUT 1	b91.1	21	ЛЭ

Output voltage depends on the voltage supplying digital outputs (terminals 20 and 23), than can range between 5 and 24 Vdc.

10.2 Relay outputs

The status of the relay output is managed by the binary parameter b91.2, with an output voltage of 24Vdc.

Relay output	Binary parameter	pin	Terminal
N.O.	b91.2	18	V5
N.C.	091.2	19	AJ

10.3 Uscite analogiche

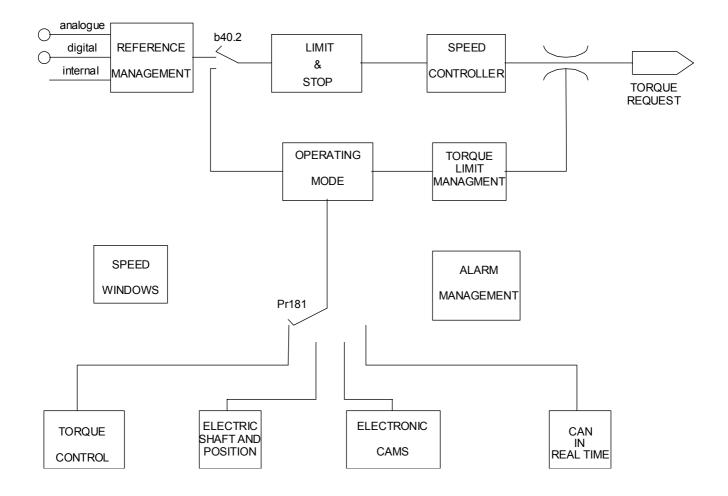
Two programmable analogue outputs are available: "monitor 1" (pin 8 of X5) and "monitor 2" (pin 7 of X5), that can be set to monitor parameters. The output voltage is ± 10 Vdc (see section on "programmable analogue outputs").

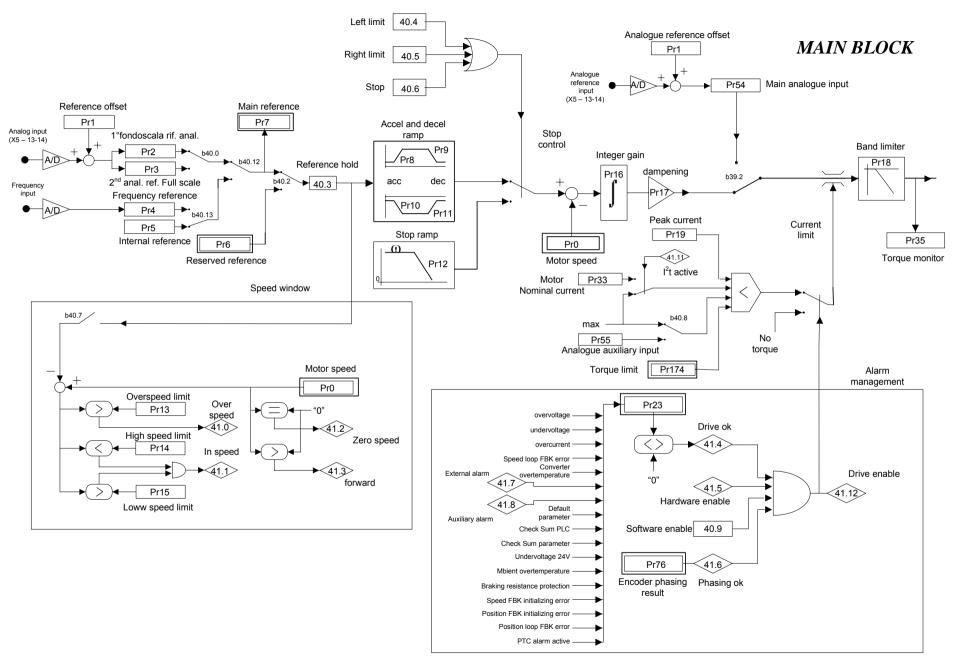
11 DYNAMIC BRAKING

In its basic configuration, a dynamic braking resistor is available inside; the resistor data are provided in the default drive configuration.

If an external dynamic braking resistor is required, enter the relevant data in the currently used resistor.

We remind you that the external braking resistor value in ohm is not freely selectable, but must be based on the type of drive used. Refer to the "Technical features" table.


Par.	Description		Range	Def.	Res.
Pr274	Braking resistance. Resistance in ohm,	W	0÷65535	-	1Ω
	depending on the features of the resistor		$[\Omega]$		
	installed in the drive.				
Pr275	Braking resistor management. Resistor power		0÷65535	-	1W
	in Watt, depending on the drive size.		[W]		


N.B. When you carry out a default procedure, all factory parameters are changed and any previously entered value is lost.

12 KEY PARAMETERS

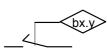
The torque, speed, acceleration and position control functions are carried out by special digital electronics. In this section we explain how parameters are set and the meaning of each parameter. We also provide a functional block diagram and a description of advanced functions. The system is easy to use and flexible.

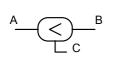
The diagram below is a general block diagram of the part of the converter that is controlled by parameters.

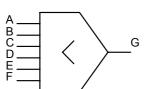
The parameters can be grouped according to their functions as follows.

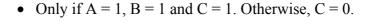
	from Pr0 to Pr49	main parameters
	from Pr130 to Pr174	position loop
IMPORTANT	from Pr90 to Pr129	Pico-PLC parameters
	from Pr181 to Pr250	operating mode parameters
	from In0 to In155	Pico-PLC instructions

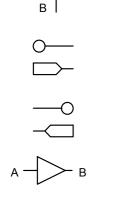
The units and main resolutions of parameters are as follows:

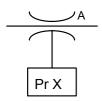

PARAMETER TYPE	UNIT	RESOLUTION
speed	revolutions/minute	1
acceleration ramp	seconds/1000 revolutions/minute.	0.001
position	pulses per motor revolution	1
current	% of the converter peak current	0.1


The main block diagram shows the speed loop. Symbols used stand for functions as described below.


Binary parameters are represented as switches and their position in the diagram corresponds to the default value.






The value of G is the lowest value of A B C D E F. •

- If A or B is equal to 1, C = 1. Otherwise, C = 0.
- C = A B.
 - values coming from the hardware
 - values sent to the hardware •
 - The value of A is converted into B. For instance, if the ٠ triangular symbol shows A/D, the analogue value of A is converted into the digital value B
 - The maximum value of A will be PrX.

. C

- A = value of parameter PrX
- Read/write of parameter PrX
- B = value depending on the values of A and PrX • Read-only parameter

PrX indicates the value of A which can also be binary

- Read/write of a binary parameter The switch position indicates bx.y=0
- The value of the binary parameter bx.y positions the switch. •
- If A is less than B, C = 1 (true). Otherwise, C = 0 (false).

12.1 Key parameters

Any time you need to save parameters and PLC settings, disable the drive first. Any time you need to change the drive configuration parameters.

IMPORTANT

IMPORTANT

Any time you need to change the drive configuration parameters, switch off and on again the converter in order for the new settings to be effective.

IMPORTANT

All decimal and binary parameters that are not declared are RESERVED and must not be used.

Decimal parameters

Par.	Description	Field	Range	Def.	Res.
Pr0	Motor speed: this is a read-only parameter	R	± 15.000	0	1 rpm
	indicating the motor speed.		[rpm]		
Pr1	Analogue reference offset. Expressed as a count	W	± 15.000	0	1
	of the input converter. The setting limits are -		[rpm]		count
	15000 and +15000.				
Pr2	First full scale of analogue reference: If	W	± 15200	3000	1 rpm
	b40.0=0 and b40.12=0, the value of Pr7 will be		[rpm]		
	equal to:				
	$\frac{V_{in} \times Pr2}{V_{in} \times Pr2}$ where Vin is the voltage at the				
	9,76				
	analogue input.				
Pr3	Second full scale of the analogue reference: If	W	±15200	-3000	1 rpm
	b40.0=1 and b40.12=0, the value of Pr7 will be		[rpm]		-
	equal to:				
	$V_{in} \times Pr3$ where V_{in} is the veltage of the				
	$\frac{\sqrt{10}}{9,76}$ where Vin is the voltage at the				
	analogue input.				
Pr4	Full scale of frequency reference: If b40.12=1	W	-32768÷	3000	1
	and b40.13=1, the value of Pr7 will be as		+32767		
	follows: if b42.5=0,				
	$\Pr 7 = \frac{F_{in} \bullet \Pr 4 \bullet 2}{2 000 000} \text{ (frequency/sign signals)}$				
	$Pr / = \frac{1}{2.000.000}$ (frequency/sign signals)				
	if b42.5=1				
	$F_{in} \bullet \Pr{4 \bullet 2}$				
	$\Pr 7 = \frac{F_{in} \bullet \Pr 4 \bullet 2}{500.000} $ (quadrature signals)				
	where Fin is the frequency at the encoder input				
	$(\leq 400 \text{ kHz}).$				
Pr5	Digital reference. If b40.12=1, and b40.13=0,	W	± 14.000	0	1 rpm
	then $Pr7 = Pr5$.	-	[rpm]	-	T
Pr6	Internal reference. It is reserved to operating	R	[rpm]	0	1 rpm
	modes. If b40.2=1, the parameter is used as a				1
	reference for the speed controller: the active				
	operating mode will write its speed request in				
	parameter Pr6.				

Par.	Description	Field	Range	Def.	Res.
Pr7	Speed reference monitor. If b40.2=0 is used,	R	[rpm]	0	1 rpm
	Pr7 is the reference for the speed controller. In				1
	some operating modes, Pr7 can be used as a				
	reference for other values (torque/acceleration)				
	and in these cases Pr7 will be expressed in the				
	most suitable unit.				
Pr8	Acceleration ramp for positive speed. The	W	0.002÷	2	0.001
	positive speed acceleration required by the motor		65.535		S
	via the speed reference is internally limited so		[s/krpm]		
l	that it takes Pr8 seconds to achieve an				
	acceleration of 1000 rpm.				
Pr9	Deceleration ramp for positive speed. The	W	0.002÷	2	0.001
	positive speed deceleration required by the		65.535		S
	motor via the speed reference is internally		[s/krpm]		
	limited so that it takes Pr9 seconds to achieve an				
	acceleration of 1000 rpm.				
Pr10	Acceleration ramp for negative speed. The	W	0.002÷	2	0.001
	negative speed acceleration required by the		65.535		S
	motor via the speed reference is internally		[s/krpm]		
	limited so that it takes Pr10 seconds to achieve				
	an acceleration of 1000 rpm.				
Pr11	Deceleration ramp for negative speed. The	W	0.002÷	2	0.001
	negative speed deceleration required by the		65.535		S
	motor via the speed reference is internally		[s/krpm]		
	limited so that it takes Pr11 seconds to achieve				
	an acceleration of 1000 rpm.				
Pr12	Emergency ramp. The deceleration required by	W	0.002÷	2	0.001
	the motor limit switch and stop functions is		65.535		S
	internally limited so that it takes Pr12 seconds to		[s/krpm]		
	achieve an acceleration of 1000 rpm.				
Pr13	Overspeed limit. If the motor speed absolute	W	± 15000	3500	1 rpm
	value exceeds the value set in Pr13, b41.0 will be		[rpm]		
	=1, otherwise, it will be = 0 .				
Pr14	High speed limit. When b40.7=0, if the speed	W	± 15000	20	1 rpm
	difference between motor and reference is lower		[rpm]		
	than Pr14 and greater than Pr15, b41.1 will be =1				
	(otherwise, it will be = 0). When $b40.7=1$, if the				
	motor speed is lower than Pr14 and greater than				
	Pr15, b41.1 will be =1, otherwise, it will be = 0 .				
Pr15	Low speed limit. When b40.7=0, if the speed	W	± 15000	-20	1 rpm
	difference between motor and reference is less		[rpm]		
	than Pr14 and greater than Pr15, b41.1 will be =				
	1, otherwise, it will be = 0. When $b40.7=1$, if the				
	motor speed is less than Pr14 and greater than				
	Pr15, b41.1 will be =1, otherwise, it will be = 0 .				
Pr16	Integral gain of the speed controller.	W	0 ÷	120	1
			+32.767		
Pr17	Proportional gain of the speed controller: If	W	$0 \div$	2000	1
	Pr16=0, Pr17 is the proportional gain of the		+32.767		
	speed controller.				
Pr18	Mechanical torque filter. Pr18 is used to set the	W	1÷	3	1
	time constant of a first order filter placed on the		+32.767		
	torque request digital signal. The frequency of		[1=64µs]		
	the filter cut will be: 620/Pr18 Hertz.				

Par.	Description	Field	Range	Def.	Res.
Pr19	Peak current. This is the maximum current that	W	0%÷100%	1000	0.1%
1117	the converter can supply to the motor. It is		[A]		I _{peak}
	expressed as a percentage of the peak current of				P
	the converter. In general, it should never exceed				
	three times the motor rated current.				
Pr20	DC Bus Voltage Unit =volt, read-only	R	-	0	1 V
-	parameter. Displays the DC bus voltage value.				
Pr21	Nominal_DC_BUS. When the drive is supplied	W	0÷744	560	1 V
	in continuous voltage, the power supply voltage		[V]		
	value must be written in this parameter.				
Pr23	Alarm code: This is the code for a present	R		-	1
	alarm. Code 0 represents the absence of alarms.				
	See the table of alarm codes for more details (see				
	Appendix "Alarms").				
Pr25	Software version code. A read-only parameter	R		-	-
	indicating the software version installed.		0.400.5		
Pr28	Motor shaft position. Read-only parameter	R	0÷4095	-	1 step
	indicating the absolute position of the resolver.		[step]	<u> </u>	
Pr29	Number of motor poles. Indicates the number	W	0÷64	0	1
D A A	of motor poles.		207(0	0	- 1
Pr30	Offset on the feedback position. Pr30 is used to	W	-32768 ÷	0	1
	correct electronically the mechanical position of		+32.767		
	speed feedback. Indicates the current vector				
	position displacement and a mechanical				
D21	revolution (corresponding to 65536).	W	0÷1	0	1
Pr31	To select the type of motor connected to the	vv	0÷1	0	1
	drive. 0: rotary brushless motor, 1: 4-pole asynchronous motor in sensor vector control				
	mode.				
Pr32	Rated speed. This is the motor rated speed. The	W	0÷14.000	0	1 rpm
F132	speed that has been set is used to limit the speed	**	[rpm]	U	i ipin
	request. Therefore, it should be set to about 10%		[ipiii]		
	greater than the maximum operational speed.				
Pr33	Rated motor current. The motor rated speed	W	0.1÷I _n	_	0.1 A
1155	must be set.		0.11 111		
Pr35	Torque monitor. Indicates the torque (or	R	0÷1000	0	0.1%
1150	current) percentage supplied by the motor.		% I _{peak}	Ũ	I _{peak}
Pr36	Winding thermal image. This is a read-only	R	0÷1000	0	0,1%
1100	parameter indicating the estimated heat in the		% T _n		T _n
	motor innermost coils of the motor windings. If				
	this reaches the value of 100.0 % equal to the				
	nominal value, b41.11 will become 1 and				
	therefore the current will be limited to the				
	nominal value.				
	Functional description: supposing to supply the				
	drive peak current, starting from an initial				
	condition where the current output was zero,				
	after 2s parameter Pr36=100% and b41.11=1. As				
	a result: the current supplied by the drive will be				
	limited to the nominal value. This condition will				
	stay permanently. However, if the drive is set to				
	supply zero current, after about 35s, parameter				
	Pr36 will return to a zero value.	1	1	1	

Par.	Description	Field	Range	Def.	Res.
Pr45	Base_speed_asinc. Asynchronous motor speed in synchronism conditions.	W	[rpm]		1 rpm
Pr46	Motor resistance. Unit ohm. The phase-phase resistance of the motor. The entered value is expressed in tenths of ohm.	W	0.1÷300 [Ω]	0	0.1 Ω
Pr47	Motor inductance. Unit mH. The phase-phase inductance of the motor. The entered value is expressed in tenths of mH.	W	0.1÷500 [mH]	0	0.1mH
Pr48	SLIP_ASINC. Asynchronous motor slip.	0÷32767 [rpm]	0	1 rpm	
Pr49	MAGN_CURR_ASINC. Asynchronous motor magnetizing current. Pr 49 = Pr 33 × $\sqrt{1 - \cos^2 \varphi}$		0÷32767 [A]	0	0.1 A
Pr50	Analogue pointer 1. Used as parameter pointer. The set value corresponds to the Parameter number. Pr50= value of pointed Pr.	W	0÷385	0	1
Pr51	Analogue input 1 scale. Defines the scaling of the monitored parameter: $2^{\Pr[51]}$.	W	±16	0	1
Pr52	Analogue pointer 2. Used as parameter pointer. The set value corresponds to the Parameter number. Pr52= value of pointed Pr.	W	0÷385	35	1
Pr53	Analogue input 2 scale. Defines the scaling of the monitored parameter: $2^{\Pr[53]}$.	W	±16	0	1
Pr54	Analogue input 1. Values can range from – 32768 to +32767 with input voltages ranging from –10V to +10V [1V~3276,7 count].	W	-32768 ÷ 32767 count	-	0,1
Pr55	Analogue input 2. Values can range from -1023 to +1023 with input voltages ranging from -10V to +10V [1V~102,4 count].	W	-1024 ÷ +1023 count	-	0,1
Pr56	Module temperature. Measures the power module temperature in °C. (0) when temperature is within the operating condition range (based on the drive size).	R	[°C]	-	1°C
Pr57	Board temperature. Measures the temperature of the control board in °C and generates an alarm when the temperature gets over 70°C (158°F).	R	[°C]	-	1°C
Pr58	No. of FBK. Encoder pulses. Indicates the number of pulses per revolution (times 4 in the count) ranging from 1 to 32767. It can be set <0 to reverse the count only with incremental encoders and not with sincos encoders, as the latter require a correct cabling of sine-cosine signals (traces A and B). With values above 32767, the number of pulses per revolution must be set as powers of 2 up to the limit of 2^{18} pulses per revolution (then times 4 by the front read) [see mode set by bits 1 and 2 of parameter 65].	W	-32768 ÷ +32767	1024	1
Pr59	No. of IN. Encoder pulses Like Parameter 58 but exclusively dedicated to incremental encoders.	W	-32768 ÷+32767	1024	1

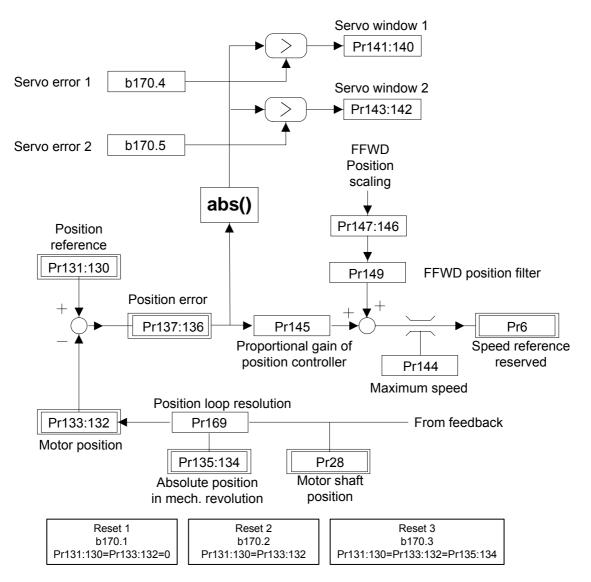
Par.	Description	Field	Range	Def.	Res.
Pr60	Number of resolver poles. The pole number	W	2, 4 or 8	2	1
	setting has the following values: 2, 4 or 8; where				
	the limit speed is 14000rpm for 2 poles,				
	7000rpm for 4 poles and 3500rpm for 8 poles.				
	N.B. when the resolver is not used, leave				
	parameter Pr60=2.				
Pr62	Input B selection	W	$0 \div 7$	0	1
1102	0 Sincos + EnDat			Ũ	-
	1 Sincos				
	2 Less wiring				
	3 Square incremental encoder				
	4 F/D incremental encoder				
	5 square IN2 IN3 (24V) inputs				
	6 IN2 IN3 (24V) F/D inputs.				
	7 Sincos + Hiperface				
	(The setting is enabled at the next power on).				
Dr62	Input C selection	W	$2 \div 6$	3	1
Pr63	3 Square incremental encoder	vv	$2 \div 0$	3	1
	4 F/D incremental encoder				
	5 square IN2 IN3 (24V) inputs				
	6 IN2 IN3 (24V) F/D inputs				
D (0 (0	(The setting is enabled at the next power on).	117	227(0	0	1
Pr69:68	Multiturn zeroing preset. In this register the	W	-32768	0	1
	machine resetting value is entered. The value can		÷+32767		
	be different from zero.				
Pr71	Enc. simulation parameter pointer Read	W	0÷385	0	1
	always in Long at 32 bit; the selected parameter				
	is the low word. If you select a single word,				
	mind the significance of the following high				
	word, which is also read. E.g. if we read Pr0 and				
	the motor is halted, but the speed has a value of				
	+/-1 Rpm, the pointer will read +1 and write +1,				
	at -1 it reads the long Pr0:Pr1 word, and				
	therefore 65535; the encoder simulator will in				
	this case be moved by the same value.				
Pr72	Enc. Simulation pulses per revolution. If	W	0 ÷	1024	1
	b70.0=0, values range from 4 to 65535 pulses		+32767		
	per revolution; if b70.0=1 is the exponent and				
	the maximum value that can be entered is 18,				
	Default=1024 is the number of pulses per				
	revolution used in the encoder simulation. The				
	maximum frequency is 400 kHz.				
	$F_{in} = \frac{\{\text{pulse encoder}\} \times \{\text{speed} [rpm]\}}{\{\text{speed} [rpm]\}} \le 400 [kHz]$				
	$F_{in} = \frac{(p \text{ and } c \text{ or } c \text{ or } c \text{ or } c \text{ or } p \text{ or } p$				
D=7(R	0 ÷ 1	0	1
Pr76	Enc. phasing result. When the encoder phasing	Л	0 - 1	0	1
	is completed, this parameter indicates if the				
	phasing is OK or if it must be repeated taking				
	into account the previously disregarded				
D ==	conditions.	***			
Pr77	Enc. address CAN IN.	W		0	
Pr167	Drive type code.	R			
D 4 - 4	Torque limit. Is used by the operating modes to	R	0%÷100%	1000	0.1%
Pr174	Torque mint. Is used by the operating modes to		0/0 100/0	1000	0.1/0

Par.	Description	Field	Range	Def.	Res.
Pr181	Operating mode. Parameter Pr181 can be used	W	0÷385	0	1
	to select the active operating mode. The value 0				
	means that no operating mode has been selected.				
Pr256	Serial link 232 speed code. Code used to	W	0÷8	6	1
	program the transmission speed. For further				
	information, see the section on the SERIAL				
D 050	INTERFACE.	117	0.21		1
Pr258	Serial link 422 speed code. Code used to	W	0÷31	6	1
	program the transmission speed. For further information, see the section on the SERIAL				
	INTERFACE.				
Pr259	Serial link 422 address code. For further	W	0÷31	0	1
11239	information see the relevant section	••	0.31	U	1
Pr260	BAUDRATE CAN. CAN line transmission	W	0÷32767	1	1
11200	speed programming code.		0 22/0/	1	1
Pr261	CAN address. Indicates CAN address value.	W	0÷127	1	1
Pr268	FPGA_SW_REL. Indicates the firmware	R	_	-	-
	version in the FPGA flash memory.				
Pr271	Encoder vibration step. Indicates the phasing	W	0÷200	-	1
	vibration duration length. Parameter calculated				
	with type 2 phasing (see relevant section for				
	information about type 2 phasing procedure).				
Pr274	Braking resistance. Resistance in ohm,	W	0÷65535	-	1Ω
	depending on the features of the resistor installed		$[\Omega]$		
	in the drive.		0 (4 ** *
Pr275	Braking resistor power. Resistor power	W	0÷65535	-	1W
	wattage, depending on the drive size.		[W]		

Par.	Description	Field	Def.
	1		-
b39.0	DC supplied drive Dcbus nominal in Pr21. The value identifies the drive's	W	0
	power supply: in case of three-phase alternated supply, the bit must be set to		
	0; in case of continuous supply, the bit must be set to 1.		
b39.2	Torque required by the main analogue reference. If the bit is set to 1,	W	0
	$10V_{\text{peak}}$ will be taken as reference.		
b39.8	Automatic undervoltage reset. If set to 1, the under-voltage alarm will	W	0
	automatically be set to $\vec{0}$ when power returns. (The setting is enabled at the		
	next power on).		
b39.10	Motor cogging compensation. If bit = 1, motor cogging compensation is	W	0
	enabled. This command must not be given before calculating the		
	compensation (b42.7).		
b39.11	Motor control PWM 16 kHz – (0) 8 kHz. If enabled, b39.11=1, the first	W	0
	time the drive is powered on again PWM at 16Khz is enabled, the drive		
	nominal and peak currents are derated by 30%. (Pr33 – 30% and Pr19 –		
	30%). (The setting is enabled at the next power on).		
1 2 2 1 2		117	1
b39.13	Pico-PLC status: START(1) – STOP(0). If set to 1, the PLC program is	W	1
	executed. If set to 0, the Pico-PLC is in stop and the PLC instructions can be		
	modified.		
	(0) IN1 value captured on the rising edge - (1) IN1 value captured on the	W	0
	falling edge. The IN1 signal switching front depending on the bit setting.		

Par.	Description	Field	Def.
b39.15	(0) IN2 value captured on the rising edge - (1) IN2 value captured on the	W	0
	falling edge. The IN2 signal switching front depending on the bit setting.		
b40.0	Selection of the first or second full scale of the speed reference. If $= 0$,	W	0
	Pr2 will be used to rate the analogue reference. If = 1, parameter Pr3 will be		
1 40 1	used. All $f = 1$ the elementary situation of 0 much $1f = 1$ the elementary is	117	
b40.1	Algorithm to suppress vibration at 0 speed. If = 1, the algorithm is enabled.	W	0
b40.2	Speed reference or operating mode selection. If $= 1$, the reserved	W	0
040.2	reference of the operating mode in use is used. If $= 0$, the reference selected	••	Ū
	by b40.0, b40.12 and b40.13 is used.		
b40.3	Reference hold. If = 1, the reference will not be updated and the motor will	W	0
	not follow the variations of the input reference. If $= 0$, the reference will		
	follow the variation of the input reference.		
b40.4	Left limit switch. If = 1 and the reference selected requires positive speed,	W	0
	the reference is set to 0 following the ramp set in $Pr12$. If = 0, no control is		
b40.5	made. Right limit switch. If = 1 and the reference selected requires negative	W	0
040.5	speed, the reference is set to 0 following the ramp set in Pr12. If $= 0$, no	vv	0
	control is made		
b40.6	Motor stop function. If $= 1$, the motor is set to zero speed following the	W	0
0.010	ramp set in Pr12.		-
b40.7	Absolute/relative speed window selection. If $= 0$, the speed window Pr14	W	0
	Pr15 b41.1 will function in relative mode. Otherwise, if = 1, it will function		
	in absolute mode.		
b40.8	Analogue torque limit. If = 1, Pr55 will be used, followed by the auxiliary	W	0
	analogue input, in order to limit the torque to the motor. Consider that in this		
	mode the sign of the voltage applied to the differential analogue input is not relevant.		
b40.9	Software enable. If $= 0$, the converter cannot be enabled.	W	1
	Low voltage. Activates low voltage management.	W	0
	Digital/analogue reference selection. If $= 0$, the analogue input will be	W	0
040.12	selected as the main reference. If $= 1$, the reference will be digital and	••	Ū
	b40.13 can be used to select parameter Pr4 or parameter Pr5.		
b40.13		W	0
	make the selection. If $= 0$, the internal reference can be used. If $= 1$, the		
	frequency input (encoder-in) which can be configured as		
1 41 0	frequency/direction.		
b41.0	Overspeed. When the absolute value of the motor speed exceeds the value set in $Pr13$, $b41.0 = 1$. Otherwise, $b41.0 = 0$.	R	0
b41.1	"In speed". When b40.7=0, if the speed difference between motor and	R	0
041.1	reference is lower than Pr14 and greater than Pr15, b41.1 will be $=1$,	K	0
	otherwise, it will be $= 0$. When b40.7=1, if the motor speed is lower than		
	Pr14 and greater than Pr15, b41.1 will be $=1$, otherwise, it will be $=0$.		
b41.2	Zero speed. If the motor speed (Pr0) = 0, $b41.2=1$. Otherwise, $b41.2=0$.	R	0
b41.3	Forward. If the motor speed (Pr0) is positive, b41.3 = 1. Otherwise, b41.3 =	R	0
	0.		
b41.4	Converter O.K. If $= 1$, there is no alarm. Otherwise, $= 0$.	R	0
b41.5	Hardware enable. If $=1$, the converter hardware is enabled.	R	0
b41.6	Phasing O.K. If =1, phasing has been completed successfully.	R	1
b41.7	External alarm. An alarm that can be used by the user.	W	0
b41.8	Auxiliary alarm. A second alarm that can be used by the user.	W	0
b41.10	Speed controller saturation. b41.10=1 when the speed controller is	R	1
	supplying the maximum current.		

Par.	Description	Field	Def.
b41.11	I^2T active. Indicates that Pr36 has reached the 100.0 % value and therefore	R	0
	the converter is limiting the current to the nominal value.		
b41.12	Converter enabled.	R	0
b41.13	480V mode. If b41.13=1, the 3-phase power supply voltage is at 440V (400 + 10%). If b41.13 = 1 at power up, the nominal current Pr33 and peak current Pr19 of the drive are derated by 10% (Pr33-10% and Pr19-10%).	R	0
b42.0	Ref. offset reset command. Analogue (if < 200mV) (auto reset). Command b42.0 automatically compensates for the main analogue reference offset entering the reference reset value in Pr1. Such operation is only performed if the offset to be compensated is lower than 200mV.	W	0
b42.1	Key parameters $blocked(0) - modifiable(1)$. If set to 0, key parameters cannot be modified. If the bit is set to 1, the drive requires the default parameters again (if Pr23=0).	W	0
b42.2	PTC motor pre-alarm (1). This pre-alarm allows to stop the machine before (around $125^{\circ}C - 257^{\circ}F$) reaching the alarm limit (around $135^{\circ}C - 275^{\circ}F$).	R	0
b42.3	<150VAC power supply. It is 1 if the power line is < 150VAC.	Rw	0
b42.4	3-phase power supply. It is 1 if the power line is not 3-phase.	Rw	0
b42.7	Cogging compensation calculation command. (1) Calculates the motor cogging mapping. When the calculation has been completed, the bit status automatically goes back to"0" (see par. "motor cogging compensation").	Rw	0
b42.8	Static brake release. (1) Controls the output controlling the emergency brake of terminal block X3. The brake block-release function in all operating conditions must be performed by the user.	W	0
b42.10	Alarm reset command. After removing the cause that has generated the alarm, give a command to reset the drive alarm status.	W	0
b42.12	Programming default. Programming default loading command.	W	0
b42.13		W	0
b42.14	Save Pico-PLC. This command is used to save PLC instructions. <u>Never</u> activate while drive is enabled.	W	
b42.15	Save parameters + tables. This command is used to save parameters. <u>Never</u> activate while drive is enabled.	W	
b64.0	Sensing function. When (1) is active, it means that a FBK sign is present and that the power supply of the FBK encoder, ranging from 5 to 8V, is compensated for any voltage drops due to the cable length.	R	-
b64.2	Type 1 encoder phasing (vector orientation). See specific section.	W	0
b64.4	Type 2 encoder phasing (vibration). See specific section.	W	0
b64.8	Phase value saving. The command saves the phase value on the encoder EnDat (disables the drive and prevents any further enabling command. To enable the drive you'll need to switch it off and on again).	W	0
b64.9	Multiturn position reset on encoder EnDat. Defines the machine "zero" position. The value is set in register Pr68:69. The command must be given while the drive is disabled. In order for this function to be available, save the parameters and switch the drive off and on again (disables the drive and prevents any further enabling command. To enable the drive you'll need to switch it off and on again).	W	0
b65.0	FBK power supply. (1) if fbk encoder power supply is active.	R	-
b65.1	FBK B encoder pulses per revolution count selection. (1) number of pulses per revolution of FBK B encoder $=2^{Pr58}$, (0) number pulses per rev.= Pr58.	W	0


Par.	Description	Field	Def.
b65.2	FBK C encoder pulses per revolution count selection. (1) number of	W	0
	pulses per revolution of FBK B encoder $=2^{Pr59}$, (0) number pulses per rev.= Pr59.		
b65.3	Encoder zero point dog fine tuning. When the bit is set to1, it activates a	W	0
005.5	function that enables the zero encoder point dog fine tuning following	••	v
	phasing only for less wiring.		
b65.6	Encoder input voltage selection (*), only for FBK B.	W	0
005.0	See table below.	vv	0
b65.7	Encoder input voltage selection (*), only for FBK B.	W	0
005.7	See table below.	**	U
b65.14		W	0
	Speed loop feedback selection bit (**). See table below.	W	0
b70.0	Selection of number of pulses per revolution for Encoder OUT. (1)	R	0
	number of Pulses pr rev. of encoder OUT = 2^{Pr72} (0) number of pulses per		
	rev.= Pr72. If the parameter is set to 0, the value entered in parameter Pr72		
	is the value of encoder pulses. If is set to 1, the value of encoder pulses will		
	be calculated as 2 elevated to the n th power, where the exponent will be the		
	value entered in parameter $Pr72$, up to a maximum value of 2^{18} .		
b70.3	Parameter simulation. When the bit is set to 1, the encoder output	W	0
	simulation does not have the motor shaft position as a reference, but rather		
	the value of the parameter pointed by Pr71, so that increments can be		
	simulated starting from a path generator rather than from the real motor		
1 - 0 0	position.	XX 7	
b78.0	Disables emc transmission in CANopen. The function is active when the	W	0
1.70 7	bit is 1. Enables out generation of a reference position on the digital bus. The		
b78.7	function is active when the bit is 1.		
b79.0	CAN bus, warning. The status is active when the bit is 1. The parameter	R	0
079.0	warns when the bus communication is not working.	К	Ŭ
b79.1	CAN bus, off warning. The status is active when the bit is 1. The parameter	R	0
079.1	warns when the communication bus is off.		Ŭ
b79.3	Rs232 serial initializing command. Command to reinitialize serial	W	0
	communication whenever the speed value of the serial link (Pr256) has been		
	modified. The serial link is in any case initialized when the converter is		
	powered on.		
b79.4	Rs485/422 serial initializing command. Command to reinitialize serial	W	0
	communication whenever the speed or the address value (Pr258 and Pr259)		
	of the serial link have been changed. The serial link is in any case initialized		
	when the converter is powered on.	** *	
b79.5	CAN A initializing command. Command to reinitialize CAN	W	0
	communication whenever the speed or the address value (Pr260 and Pr261)		
	of the CAN line have been changed. This is in any case initialized when the		
1-70 (converter is powered on.	W	0
b79.6	Reference position initializing command on digital bus CAN B.	W	0
b79.12	Sending spare data in CANopen Emergency. Enables sending data- containing messages. The function is active when the bit is 1.	vv	0
h70.14	CAN bus block sync watchdog.	RW	0
	•		-
0/9.13	Position reference CAN bus watchdog on digital bus.	R	0

13 OPERATING MODES

Parameter Pr181 (default = 0) is used to select the operating mode. Every operating mode controls speed using parameter Pr6 and can use parameter Pr174 to limit the torque at the motor through parameter Pr21 (see the block diagram). Speed control will use as reference Pr6 or Pr7, depending on the value of b40.2. Before changing Pr181, b40.2 must be set to 0 in order to avoid unwanted movements of the motor. Therefore, it is possible to set Pr181 to the value that corresponds to the selected operating mode. The parameter b42.13 is used to load the default parameters for the selected operating mode.

13.1 Position control

All operating modes need to control the motor in position by using the position loop described in the block diagram shown in the figure below.

Operating modes generate the position reference, which is processed through position control in order to generate a speed request that will be transmitted to the speed loop through parameter Pr6, whose maximum value, with any sign, is limited by parameter Pr144.

The position control function calculates the "position error" value and compares it to the error window in order to generate a "<u>servo error</u>" warning message. An adequate response to the servo error message will be given by the user through pico-PLC.

Parameter Pr145 identifies the value of the proportional gain in the position loop and shall be adjusted in such a way as to ensure a vibrationless movement with no overshoot on the final position. As the gain is only proportional, the error will tend to increase as the axis speed increases, and then it will be recovered at the end of the positioning process. For this reason, if it were necessary to act more quickly, e.g. in a quick positioning, while minimizing the profile execution error rate, you could enter feedforward Pr147:146 and add a filter on the same feedforward by parameter Pr149.

The position loop resolution can be selected through parameter Pr169, that would be considered as the exponent of 2 elevated to the n^{th} power: 2^{Pr169} .

Par.	Description	Field	Range	Def.	Res.
Pr131:130		R	$\pm 2^{31}$	-	1
	"theoretical" position. The parameter resolution is				
D 100 100	defined according to the setting of parameter Pr169.	D	±2 ³¹		1
Pr133:132		R	$\pm 2^{\circ \circ}$	-	1
	feedback resolution can be set in parameter Pr169, with values ranging from 2^{12} and 2^{20} .				
Pr135:134		R	$\pm 2^{31}$		
11155.154	The counter resolution can be selected by parameter	K	<u>/</u> -	_	
	Pr169.				
Pr137:136	Position error. Register containing the difference	R	$\pm 2^{31}$	0	1
	value between the motor position and the reference				
	position.				
Pr141:140	servo1. If the position error as an absolute value	W	$\pm 2^{31}$	100	1step
	exceeds the value set in Pr140, b70.4 is set to 1.				
	Otherwise, b $170.4 = 0.$			• • • •	1.
Pr143:142	servo2. If the position error as an absolute value	W	$\pm 2^{31}$	200	1step
	exceeds the value set in Pr142, b70.5 is set to 1. Otherwise, $b \ 170.5 = 0$.				
Pr144	Speed limit in position. By this parameter the motor	W	0	3200	1rpm
F1144	maximum speed can be limited in the position loop.	vv	÷14000	5200	mpin
	This parameter is not considered if the set value is		[rpm]		
	greater than the value of Pr32.		[.b.i.]		
Pr145	Proportional position gain.	W	0	100	1
			÷32000		
Pr147:146	Position feedforward scaling.	W	$\pm 2^{31}$	7324	1
Pr149	Position feedforward FIL. Delay filter on the speed	W	-32768	0	1
	feedforward in the position loop. Pr149 is used to set		÷32767		
	the time constant τ of a first order filter placed on the				
	speed request digital signal. ($\tau = Pr149 * loop$ field				
	time).				
Pr169	Position loop resolution selection. The position	W	12÷20	12	2 ^{Pr[169]}
	loop resolution can be selected by parameter Pr169.				
	ranging from 12 to 20 bit. The parameter change is				
	effective the next time the drive is powered up.				

Decimal parameters


Par.	Description		Field	Def.
b170.0	Feedback direction. When the bit is set to 1, th rotation is inverted.	e motor	W	0
b170.1	Reset 1. Reset command type 1: this is used to reposition reference counters and the motor recounters. Self resetting		W	0
b170.2	Reset 2. Reset command type 2: the position recounter, Pr130:131 ("theoretical" position), gets the value as the motor "real" position Pr132:13 resetting.	he same	W	0
b170.3	Reset 3. Reset command type 3.(Pr212:213=Presetting	r2. Self	W	0
b170.4	Servo error 1. b170.4 will be set to 1 if the position error R as an absolute value exceeds the value set in Pr140.			
b170.5	Servo error 2. b170.5 will be set to 1 if the positi as an absolute value exceeds the value set in Pr142		R	0
b170.14	Position loop feedback selection. Position loop feedback selection bit **	eedback	W	0
b170.15 Position loop feedback selection. Position loop feedback selection bit **		eedback	W	0
**	b170.15		b170.14	k
FB	3K A 0		0	
	3K B 0		1	
	3K C 1		0	
Re	eserved ("00" automatic reset)		1	

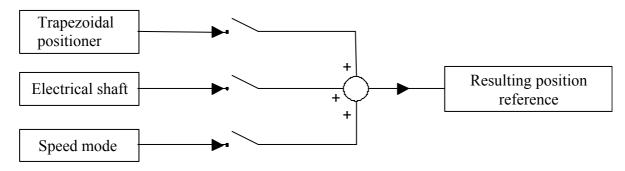
13.2 Torque control (operating mode 110)

By this operating mode it is possible to control the current supplied to the motor and the consequent torque to the mechanical system in two selectable modes, using bit b39.2. When b39.2=0 (default), speed control is operating to manage the limit speed Pr190 with an available torque which is directly proportional to the value of Pr7.

Set parameter Pr181=110 so as to activate the operating mode and give a command to set the default parameters with b42.13. Set Pr2=1000 (10V=100.0 % of the torque), b40.0=0, b40.12=0, b40.2=1 in order to enable the reserved reference Pr190 so as to limit the motor maximum speed.

b39.2=1 can be used to select servo torque management. In this mode the speed loop is overridden and therefore it does not need to be constantly tuned.

OPERATING MODE 110 PARAMETERS


Par.	Description	Field	Range	Def.	Res.
Pr190	Maximum speed. This parameter is used to limit the	W	± 14000	3000	1 rpm
	absolute maximum speed of the motor during torque		[rpm]		
	operation.				

13.3 Electrical shaft and positioned (op. mod. 120)

Operating mode 120 is the algebric sum of the 3 delta of position generators :

- Position reference from the trapezoidal profile
- Position reference from the electrical shaft generator
- Position reference from the speed mode

Each reference can be selected and entered independently.

13.3.1 Speed mode:

This command is in Pr190. It can be used in order to move the motor within the selected operating mode as if it were in speed mode, through a parameter-controlled ramp used to link any changes in the speed parameter Pr190.

13.3.2 Electrical axis:

In the "Electrical axis" mode, the motor, called slave, can follow a motor called master, by means of digital reference signals.

The reference for the electrical axis can be sent by a digital bus encoder or by ports B or C. The desired reference selection is made through binary parameters following the block diagram according to the table below:

REFERENCE SELECTION						
Мо	de descrip	tion		Input		
Sin C_{ac} + En Dat $Pr(2-0)$ Number of pulses				X7		
SinCos + EnDat	Pr62=0	Pr58	V _{dc}	Encoder power supply		
			-	•	^ v	
SinCos	Pr62=1	Number of pulses	5	b65.7=0	b65.6=0	
Sincos	1102 1	Pr58	8	b65.7=0	b65.6=1	
		1	12	b65.7=1	b65.6=0	
Quadrature increm. encoder	Pr62=3					
			4			
Encoder increm. in freq/direzione	Pr62=4					
			1			

REFERENCE SELECTION							
Мо	de descrip	Input					
SinCos + Hiperface	Pr62=7	Number of pulses Pr58					
Quadrature increm. encoder	Pr63=3		X9				
Freq./direction increm. encoder	Pr63=4						
Quadrature IN2 IN3 inputs	Pr63=5	$f_{enc\ in}\!\le\!400kHz$					
Freq./direction IN2 IN3 inputs	Pr63=6	$f_{enc\ in}\!\leq\!400kHz$	X5				
Quadrature IN2 IN3 inputs	Pr62=5	$f_{enc\ in}\!\leq\!400kHz$	15				
Freq./direction IN2 IN3 inputs	Pr62=6	$f_{enc\ in}\!\leq\!400kHz$					

It is important to consider that the feedback signal constrains the input configuration parameter: parameter Pr62 is related to ports X7 and X5, whereas parameter Pr63 refers to ports X9 and X5. These two parameters also have the same meaning. If you want to use a reference signal, this will have to be connected to the free input in order to be used.

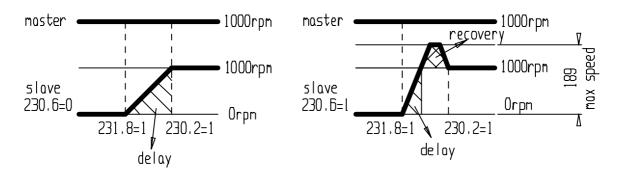
F_{in}: is the input frequency, that is:

$$F_{in} = \frac{\{encoder_pulses\} \times \{speed[rpm]\}}{60[sec/min]} \le 400[kHz]$$

Pr7: is the motor rpm speed:

$$\Pr 7 = \frac{F_{in} \bullet \Pr 4 \bullet 2}{2.000.000}$$

Thus Pr4 has a value of:


$$\Pr 4 = \frac{\Pr 7 \bullet 2.000.000}{2 \bullet F_{in}}$$

Pr4 is the full scale value to be entered into the converter in order to get the motor speed and input frequencies. If the system is not in quadrature mode but in frequency/direction mode, the speed will be 4 times lower.

Besides the physical reference signal, a reference can be selected on Digital Bus via CAN, enabling b170.12=1 for the encoder counter B and setting b170.11=1 for encoder counter C.

Either the immediate enable bits or events can be used to engage the electrical axis, with or without phase recovery.

The tracking mode control and regulation are performed through the parameter-controlled ramps. The phase recovery function can also be used, (to recover the time lost during the engaging process at acceleration).

The phase recovery when the function is active is outlined in the figure above. Parameter Pr 189 is used to define the maximum velocity at which the slave recovers the space lost to the master. The axis ratio can be set by parameter Pr187, that is the reference signal multiplier, as well as by Pr188, which is the reference signal divider. A report can be directly sent to the signal of encoder port B, Pr156/Pr157, and of encoder port C, Pr154/Pr155.

The slave axis is engaged to the master either immediately or when an event occurs. The choice is made on two separate bits. A bit signals when the axis is engaged.

The axis can be disengaged either immediately or through the disengage bit.

13.3.3 Positioner

The "Positioner" function performs the task to bring the motor from the "actual position" to the position set in the "Final position" parameter.

The positioner start is automatically generated when the "Final position" and the "Actual position" values are different, keeping in mind that the motion parameter assessment in relation to the positioner start can be performed only by bit b231.4=1.

With bit b231.4=0 the positioner start cannot be performed. The motion parameters are variables defining the "Final position", the motor speed and the linear deceleration ramp.

This type of positioning is called "Trapezoidal profile". The motor actually moves only if bit b230.9=1.

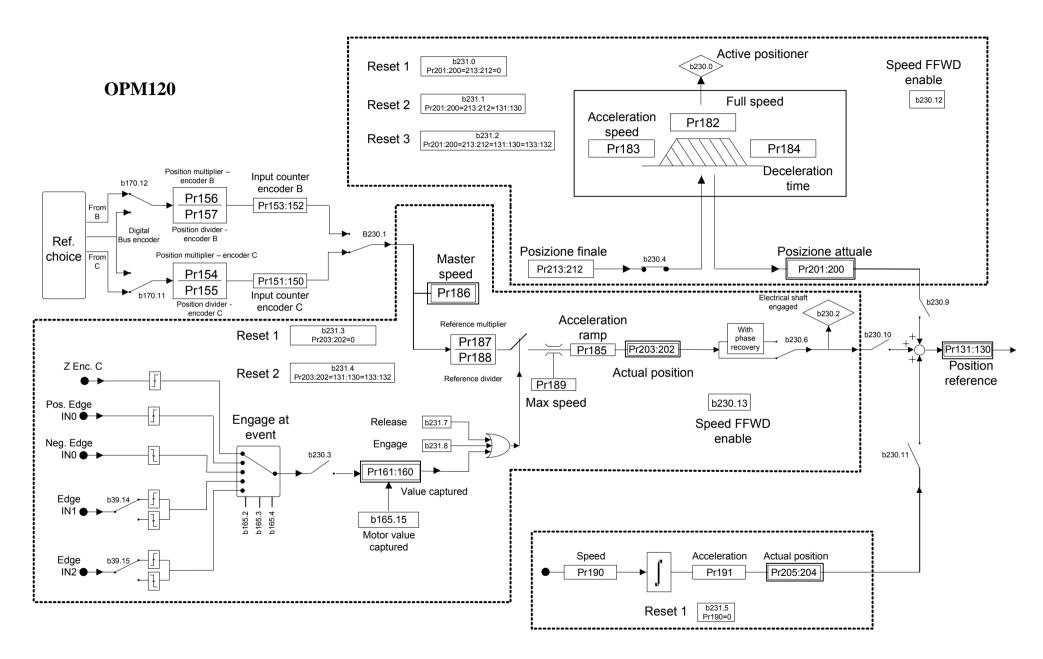
13.3.4 TAB0: profiles in memory

In OPM120 is possible use the TAB0 to memory up to 51 trapezoidal profiles, and for everyone is possible memorize the speed, the acceleration ramp, the deceleration ramp and the final position in double word.

The Pr193 parameter contains the number of the profile to execute, with b231.10=1 bit the function is able to transfer the block of 5 variables of profile in the positioner variables.

TAB0 1^a word – speed – Pr182 TAB0 2^a word – acc ramp – Pr183 TAB0 3^a word – dec ramp – Pr184 TAB0 4^a e 5^aword – final position – Pr213:212

With the qualified function, b231.10=1, is possible execute automatically another profile, simply setting up in the pointer parameter, Pr193, another value. Every scansion, the parameters are transferred from the table to the positioner variables, if the function is able, b231.10=1.


In order to insert the values in variables of TAB0, using the "configuration" tool it is necessary open the "monitor" window, where it is possible to access from Pr2048 to Pr2302

parameter, where there are the variables of the 51 trapezoidal profiles, and it possible read and modify them.

To insert the values via keypad, it necessary selects TAB0 (T0), indicate the variable of TAB0 (from 0 to 254), and in the inferior line write the width of the parameter.

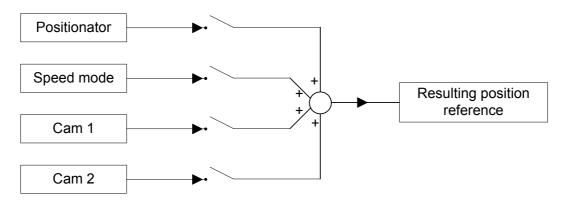
It is necessary save the parameters for guarantee the memory of the profiles inserted.

b231.10=1 TAB0 activation by profiles					
Pointer to table Pr193	TAB0 point	Positi	oner variables		
	0	Pr182	Speed		
	1	Pr183	Accel. ramp.		
	2	Pr184	Decel. ramp.		
Ŭ	3	Pr212	Final position		
	4	Pr213	r mai position		
	5	Pr182	Speed		
	6	Pr183	Accel. ramp.		
	7	Pr184	Decel. ramp.		
_	8	Pr212	Final position		
	9	Pr213	r mai position		
Į					
	245	Pr182	Speed		
	246	Pr183	Accel. ramp.		
49 🗆	247	Pr184	Decel. ramp.		
	248	Pr212	Einal nasition		
	249	Pr213	Final position		
	250	Pr182	Speed		
	251	Pr183	Accel. ramp.		
50	252	Pr184	Decel. ramp.		
	253	Pr212	Final position		
	254	Pr213			

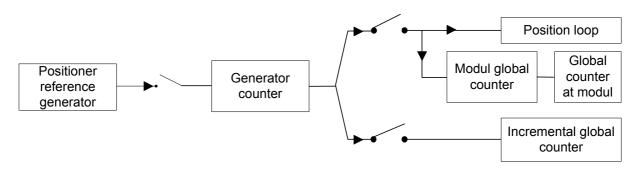
Par.	Description	Field	Range	Def.	Res.
Pr182	Trapezoidal positioner speed in operating	W	0÷14000	1000	1 rpm
	mode 120. This is the full speed that will be used		[rpm]		
	during the generation of the position profile.				
Pr183	Trapezoidal positioner speed in operating	W	0÷4500	500	0.001s
	mode 120. This is defined as the time in mS,		[s/krpm]		
	Pr183, needed to go from 0 to 1000 rpm.				
Pr184	Trapezoidal positioner deceleration in	W	0÷4500	500	0.001s
	operating mode 120. This is defined as the time		[s/krpm]		
	in mS, Pr183, needed to go from 1000 rpm to 0.	***	0 4500		0.001
Pr185	Electrical shaft ramp in operating mode 120.	W	0÷4500	500	0.001s
	This is used to set the acceleration and		[s/krpm]		
	deceleration ramps of the electrical shaft,				
D 107	expressed in ms from 0 to 1000rpm.	D	[1
Pr186	Encoder-in rotation speed (master). Indicates	R	[rpm]	-	1 rpm
	the input reference frequency translated into rpm				
D 107	(based on 4096 pulses/revolution).	M/	227(0	1	1
Pr187	Reference multiplier (master). Using this	W	-32768	1	1
	parameter and Pr188, the user can set the desired		÷32767		
D 100	input reference frequency ratio.	M/	227(0	1	1
Pr188	Reference divider (master). Using this parameter	W	-32768	1	1
	and Pr187, the user can set the desired input		÷32767		
D 100	reference frequency ratio.	W	0.14000	2000	1
Pr189	Maximum speed OM120. Sets the maximum	vv	0÷14000	3000	1 rpm
D=100	speed. Speed mode OM120. Sets a motor speed level	W	[rpm] 0÷14000	0	1 mm
Pr190		vv		0	1 rpm
Pr191	disregarding any other conditions. Speed mode: Pr190 ramp.	W	[rpm] 0÷4500	500	0.001s
Pf191	speed mode: F1190 ramp.	vv		300	0.0015
Pr201:200	Actual position (positioner). Read-only	R	[s/krpm] $\pm 2^{31}$		1 stop
Pf201:200	Actual position (positioner). Read-only parameter. Indicates the reference position of the	К	±2 [step]	-	1 step
	trapezoidal profile.		[step]		
Pr203:202	Actual position (electrical shaft). Read-only	R	$\pm 2^{31}$	_	1step
11203.202	parameter. Indicates the reference position of the		[step]	-	rstep
	electrical shaft.		[step]		
Pr205:204		R	$\pm 2^{31}$	-	1step
11203.204	parameter. Indicates the reference position of the		[step]		1000
	speed mode.		[200P]		
Pr213.212	Final target trapezoidal positioner value in	W	$\pm 2^{31}$	0	1
11213.212	OM120. Register where the desired final position	.,	[step]	J.	·
	is entered.		L~[L]		

Decimal parameters for operating mode 120

Par.	Description	Field	
b170.12		W	0
b230.0	Theoretical profile running. When the bit is 1, it means that the	R	0
	trapezoidal positioner theoretical profile is running.		
b230.1	ENC B or C selected as electrical shaft master. B230=1,	W	0
	ENC B has been selected.		
b230.2	"Engaged" electrical shaft. (1) Engaged electrical shaft. During the	R	0
	engaging phase, when the ramp (Pr183) is not 0, this bit indicates the		
1 0 0 0 0	end of the transitory phase.	117	0
b230.3	Electrical shaft engaged at B capture event. Activates engagement	W	0
	on a sensor selected by bits 2, 3 and 4 of b165. The captured level from		
	the master is downloaded in Pr161:160. The space lost during data		
b230.4	processing is recovered. Activates trapezoidal positioner target change. (1) Activates	W	1
0230.4	trapezoidal positioner target change. (1) Activates	vv	1
b230.6	Engage electrical shaft with phase recovery. (1)	W	0
b230.9	Enables trapezoidal positioner reference. (1)	W	1
b230.10	Enables electrical shaft reference. (1)	W	1
b230.10	Enables speed mode reference.	W	1
b230.11		W	0
0230.12	speed FFW component.	vv	U
b230.13	Electrical shaft speed FFW. (1) enables electrical shaft speed FFW	W	1
0250.15	component. [w].		1
b231.0	Type 1 trapezoidal positioner reset. Type 1 trapezoidal positioner	W	0
	reset command (Pr201:200=Pr213:212=0).		-
b231.1	Type 2 trapezoidal positioner reset. Type 2 trapezoidal positioner	W	0
	reset command (Pr201:200=Pr213:212=Pr131:130).		
b231.2	Type 3 trapezoidal positioner reset. Type 2 trapezoidal positioner	W	0
	reset command ($Pr201:200 = Pr213:212 = Pr131:130 = Pr133:132$).		
	Command used to reset the profile and setting the actual position of the		
	trapezoidal positioner to the motor FBK value.		
b231.3	Type 1 electrical shaft reset. Type 1 electrical shaft reset command	W	0
	(reference_alb_ele=0 Pr 203:202=0). The actual electrical shaft position		
10014	is reset.	M.	0
b231.4	Type 2 electrical shaft reset. Type 2 electrical shaft reset command Pr203:202=131:130=133:132.		0
b231.5	Type 1 speed mode reset. Type 1 speed mode reset command.	W	0
	Command used to reset the speed Pr190=0. The speed mode reference		
	position is also reset.		
b231.7	Electrical shaft release. Command used to release the slave from the	W	0
1.001.0	master. Self-resetting.		
b231.8	Electrical shaft engage. Command used to engage the slave to the	W	0
	master reference master. Self resetting		


13.4 Electronic came (OPM121)

This program is a preset motion mode in the drive's basic configuration, that can be programmed by selecting the following parameters: Pr181=121, b42.13=1, default setting of the selected operating mode.


Some of the most widely used motion functions of industrial automation are available within this mode. Namely, this operating mode includes the following:

- position reference generator (positioner)
- speed mode generator
- cam1 generator
- cam2 generator

The resulting position reference will therefore be the algebric sum of the position reference deltas of one or more generators.

This diagram allows to identify a general flow in operating mode 121. If you carefully analyze this mode through the block diagram, you will see that the programmer can use several enabling commands (programmable bits) at different levels in order to address the flow of the generated position reference (or references), in several display modes. For instance, for each generator a position reference can be enabled on a position counter. From here the reference will then be downloaded in the position loop or into a general position counter.

When the position reference of at least one generator is enabled in the position loop, the reference loading into a global counter defined by module is automatically enabled.

13.4.1 Posizionator

This is a trapezoidal profile generator, with the following user-definable parameters:

- speed profile
- acceleration
- deceleration
- final value in motor step

The parameters referred to the positioner levels, final position Pr211: 210 and actual position Pr201:200, are absolute. However, they are subsequently transferred to the other adjustment parameters following the block diagram.

The thus position reference generated in this way is loaded into the position loop as well as in the global counter. The generated reference, activated through a bit command, is then loaded as an addition to the master in both generators CAM1 and CAM2.

13.4.2 Speed mode

This is a position generator, but it is set as a speed reference. The following parameters will have to be set:

Rpm speedacceleration

13.4.3 CAM1 and CAM2

The two CAM generators are specifically designed to meet the requirements of automatic machines using electronic cams. Four tables are available, namely TAB0, TAB1, TAB2 and TAB3, that have been implemented to perform a series of cam functions. Each table is described by a vector made of 257 elements, that indicate the position to be taken by the controlled axis when the motor axis is in the position:

slave function = $\frac{\text{element number} \bullet \text{master modul}}{256}$

In each table the value of the vector elements is ranging between 0 and 9999, whereas 10,000 shall be the count number set in the slave module parameter.

In order to generate a table, the axis route must be divided into 257 points; the value of each point will have to be rated to 10000, because this is the maximum value that can be written in the table elements.

The 257th element of each table defines the cam as closed if it is = 0, or as open if it is = 10,000.

The motion will be able to perform the points listed in the table; if the required speed and torque are within the motor's electric limits (Maximum Speed and Torque).

Through a series of parameters it is possible to automatically program one of the motion laws that have been set in the drive in one of the four tables. Functions can be retrieved as follows:

Motion law	Motion law selection by Pr182	Table selection by Pr183
y=x	1	
y=x-[sen (x)]	2	
Triangular profile	3	Tab0=Pr183=0
Engage ramp	4	Tab1=Pr183=1
Disengage ramp	5	Tab2=Pr183=2
y=sen(x)	6	Tab3=Pr183=3

After selecting the function by Pr182, the parameter is automatically set to zero.

The four tables are the same in both CAM generators; the same table with the same function can be selected in both generators.

As a default drive configuration, TAB0 is active in CAM1 and TAB3 is active in CAM2. In order to change the default setting there are some immediate commands active for both CAM generators, or for CAM1 only of the enable commands on programmable master phase.

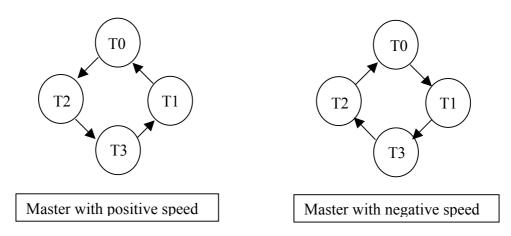
When the selected table is changed, the two generators will have a different behaviour.

Based on the executed command, CAM1 immediately activates the execution of the selected table as well as a change of module. The user will have to check the continuity of speed and torque during table and module changes. Modules with negative sign cannot be set in CAM1. CAM1 is engaged either by direct command or through an engage and disengage command on programmable master phases.

CAM2 activates the selection of a new table and the change of module only by an engage command. A module with negative sign can be set in CAM2. CAM2 will be engaged and disengaged only by command and always when the master is in phase 0, or by a single execution command (Single Shoot). If during the disengage phase bit 233.1 is activated in CAM2, the program automatically goes to master phase zero and performs the calculation of the table and of the set module, as well the engagement with the new settings.

The above described cams can be connected to either of two masters. Specific commands allow to select either one or the other master for both cams, also the same one for both.

The masters are programmed by two pointer parameters allowing to select as a master position reference any parameter of the drive. The user will have to select as pointer a parameter that has a meaning for the used motion.


Master 1 offers the possibility to enable a linear ramp to be used whenever the pointed reference must be changed.

As a default configuration, the cams are scanned throughout the master module. In both masters the selected cams can be scaled in a sector of the master module by programming the starting point and the space in which the cam shall be executed. It is possible of course to scan the cam in this way also between two master modules. The scaling is engaged by the masters, not by the cam generators, and therefore, if the same master is selected, it will be impossible to scale CAM1 and CAM2 functions in two separate sectors. You will have to program two masters with the same pointer and the same initial phasing, then engage both cams to the masters and scale them in separate sectors.

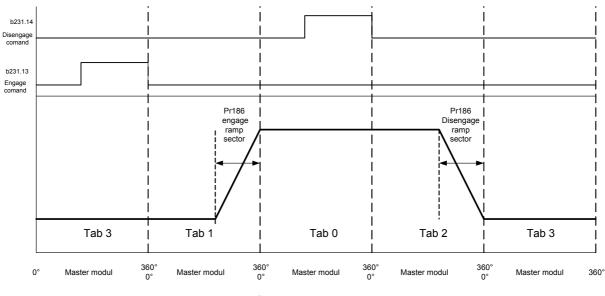
12.4.3.1 Automatic activation of CAM tables

Beside enabling tables on programmable master phase or by immediate command as shown above, the drive offers a default function providing for an automatic sequence to enable the tables.

The operation is enabled through the activation of bit 231.12 and by using bit 231.13 command in order to start per an engaging sequence or bit 231.14 command in order to start per a disengaging sequence. The switch between active tables always occurs during master phase 0. Tab1 and Tab2 are used as a link during the switch between Tab0 and Tab3 and the other way round, and therefore they cannot be active longer than one master module.

As shown in the figures, the table switching sequence is automatically inverted when the speed is negative.

The above-described function is essential, for instance, in applications where the user wants to complete an engage/disengage phase starting from a gearing function (Electrical axis) by means of linear linking ramps.


By linear links we mean the tables describing the two engage and disengage ramps. Let's suppose that Tab0 has been programmed with a y=x function (gearing) and that Tab3 has been programmed as a fixed axis, that is y=constant K. We will need to calculate both linking tables in Tab1 and Tab2 to be able to engage and disengage the axis.

If we consider, for instance, the master cycle in a module in degrees (360°) , we will have to set in Pr186 the master module sector value (ranging between 0° and 360°) that we are going to use in order to perform the two engaging and disengaging ramps.

Use Pr.183 to select the table you need to calculate and Pr182 to retrieve the drive's base configuration predefined functions del drive; in this way you will automatically calculate the curves in the engaging and disengaging tables.

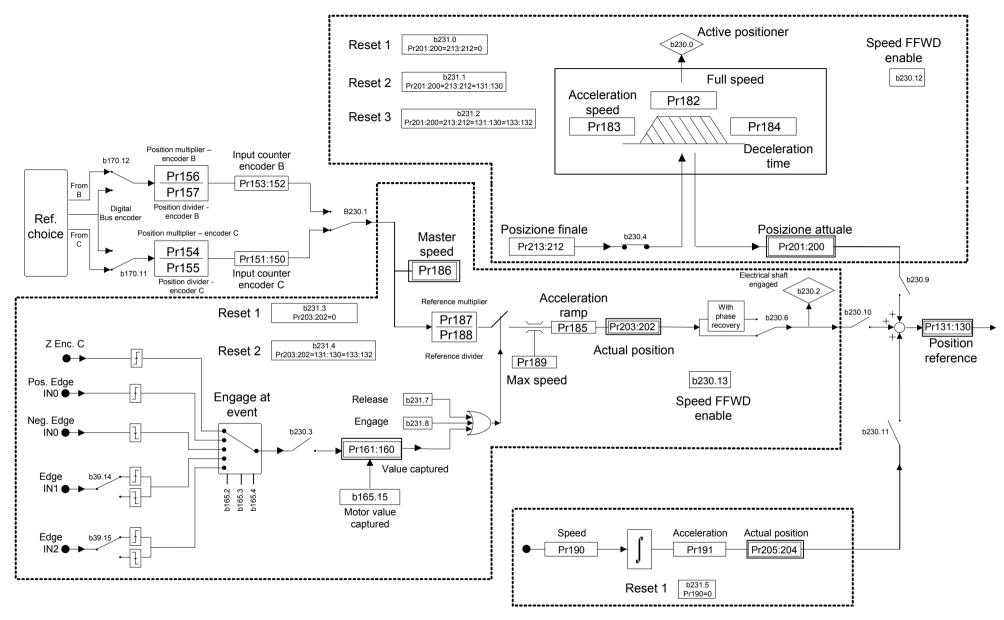
-Engaging Tab.1 calculation: Pr.183=1 (Table 1) and Pr182=4 (Engaging function); -Disengaging Tab.2 calculation: Pr.183=2 (Table 2) and Pr182=5 (Engaging function);

In order to use this application it is necessary to program a table with a constant value in all of its points. Tab.3 is a suitable table for this purpose and it can be replaced by a virtual table using commands b232.9 for CAM1 and b232.10 for CAM2. The value of the constant to be set can be taken in Pr184 for CAM1 and in Pr185 for CAM2, by reading the first value of the engage table in Tab1, and the last value of the disengage table in Tab2.

Speed curve for slave axe

The above described tables are of course an example case to describe the engage and disengage functions of an axis by changing tables, and they are calculated in order to allow these functions for an axis that needs to be dynamically disengaged/engaged according to a gearing law (y=x).

Of course it is possible to describe different tables for similar functions and load them in the relevant addresses. The user will have to draw the curves in order not to create any motion discontinuities on the axis, especially when switching between tables. In order to accomplish this and more generally to ensure user access to cam tables, these can be either read and written using the keypad or through SBC Can or serial port RS422 using address 4096 (adjacent areas of 257 words per table):


Keypa	d	SBC Can or serial
Tab.0		4096<=address<=(4096+513);
Tab.1	read and write	(4096+514)<=address<=(4096+1027);
Tab.2	directly	(4096+1028)<=address<=(4096+1541);
Tab.3)	(4096+1542)<=address<=(4096+2055);
Onnure n	er quanto riguarda	a la versione con Canonen le tabelle sono accessibili tramite SDO

Oppure per quanto riguarda la versione con Canopen le tabelle sono accessibili tramite SDO come segue:

CAN Open

Tab.0: Points 0254	Index 0x2008	Sub-index 1255
Points 255256	Index 0x2009	Sub-index 12
Tab.1: Points 0254	Index 0x200A	Sub-index 1255
Points 255256	Index 0x200B	Sub-index 12
Tab.2: Points 0254	Index 0x200C	Sub-index 1255
Points 255256	Index 0x200D	Sub-index 12
Tab.3: Points 0254	Index 0x200E	Sub-index 1255
Points 255256	Index 0x200F	Sub-index 12

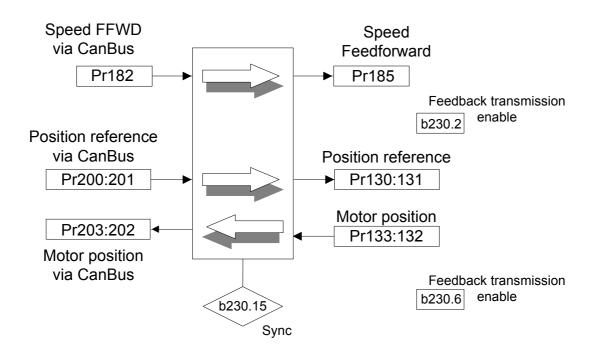
Hi-drive User Manual

Decimal parameters for operating mode 121

Par.	arameters for operating mode 121 Description	Field	Range	Def.	Res.
	-		0		
Pr182	Selection of function type. Parameter of selection	W	0÷6	0	1
	of the law of motion in order to generate the points				
	in table, like from paragraph CAM1 and CAM2.				
	This parameter doesn't come configured from the				
	display, but it can be controlled through serial				
	ways, field bus and MotionWiz. It is an autoreset				
	parameter.				
Pr183	Selection of internal function calculation table.	W	0÷3	0	1
	See the table in par. CAM1 and CAM2.				
Pr184	Value of CAM1 dummy table (Tab3). If active	W	-32768	0	1
	the fictitious table, comes considered only this		÷32767		
	value for the position of the motor in CAM1.				
Pr185	Value of CAM2 dummy table (Tab3). If active	W	-32768	0	1
11105	the factitious table, comes considered only this	••	÷32767	U	1
	value for the position of the motor in CAM2 in		. 52707		
	place of one table CAM.				
Pr186	Value in degrees of the linear engage ramp	W	0÷360	60	1°
11100	master module. Field of the module master in	**	[°]	00	1
	which the motor it executes the ramp. The tables		ΓJ		
	must be loaded after to have set up this parameter.				
Pr187	Speed in speed mode. It lets to move in speed the	W	±14000	0	1 rnm
F110/		vv		0	1rpm
D 100	motor remaining in the operative mode (Pb40.2=1).	** *	[rpm]	500	1
Pr188	Speed mode ace. Ramp. Is the ramp in ms from 0	W	2÷4500	500	1ms
	to 1000 rpm that it manages the variations of speed		[ms]		
	of Pr187.				
Pr189	Max positioner speed. Is the maximum speed, in	W	0÷14000	1000	1rpm
	rpm, that the positioner can make.		[rpm]		
Pr190	Positioner acceleration time. Is the ramp in ms	W	2÷4500	500	1ms
	from 0 to 1000 rpm that it connects the variations		[ms]		
	of speed, Pr189, of positioner.				
Pr191	Positioner deceleration time. Is the ramp in ms	W	2÷4500	500	1ms
	from 0 to 1000 rpm that it connects the variations		[ms]		
	of speed, Pr189, of positioner.				
Pr192	First Master1 reference pointer. It contains the	W	0÷384	150	1
	parameter that it references to the Master1.				
Pr193	Second Master2 reference pointer. It contains the	W	0÷384	150	1
	parameter that it references to the Master2.				
Pr194	Master 1 linking ramp. It is the ramp, in sixteenth	W	0÷32000	100	1
	of count to ms, which manages the variations of the				
	Master1.				
Pr197:196		W	$\pm 2^{31}$	0	1
11197.190	able, when the module of CAM1 catches up with	••	-2	Ŭ	
	this position, comes the CAM1 engaging.				
Pr199:198		W	0÷6	0	1
11177.170	able, when the module of CAM1 catches up with	**	0.0	U	1
	this position, comes the CAM1 release.				
Pr201:200		W	0÷3	0	1
F1201.200	_ _ _	vv	0.3	U	1
	catches up with the value of Pr211:210, the				
	generation of the profile is finished.				
		117	22760	Δ	1
Pr203:202	CAM1 reference. Position of CAM2 in its module.	W	-32768 ÷32767	0	1

Par.	Description	Field	Range	Def.	Res.
Pr205:204	CAM2 reference. Position of CAM2 in its module.	W	-32768 ÷32767	0	1
Pr211:210	Final position (Trap. positioner). It represents the quota of which the position of the motor is wanted to be increased.	W	0÷360 [°]	60	1°
Pr213:212	Pointer 1 master incremental encoder. This parameter contains all the increments sendes to you from the pointer parameter.	W	±14000 [rpm]	0	1rpm
Pr215:214	parameter contains all the increments sendes to you from the pointer parameter.	W	2÷4500 [ms]	500	1ms
Pr217:216	number of count for which the axis Master 1 it is repeated.	W	0÷14000 [rpm]		1rpm
Pr219:218	number of count for which the axis Master 2 it is repeated.	W	2÷4500 [ms]	500	1ms
Pr221:220	-	W	2÷4500 [ms]	500	1ms
Pr223:222	Master 2 axis position in module	W	0÷384	150	1
Pr225:224	CAM1 scaling –cam starting point	W	0÷384	150	1
Pr227:226	CAM1 scaling- Cam width (step)	W	0÷32000	100	1
Pr235:234	CAM1 scaling –cam starting point	W	$\pm 2^{31}$	0	1
Pr237:236	CAM2 scaling- Cam width (step)	W	0÷6	0	1
Pr239:238	CAM1 module	W	0÷3	0	1
Pr241:240	CAM2 module	W	-32768 ÷32767	0	1
Pr243:242	Reference module (sum of all enabled generators POS+SM+CAM1+CAM2)	W	-32768 ÷32767	0	1
Pr245:244	Axis position in the reference module	W	0÷360 [°]	60	1°
Pr247:246	Master phase for Tab0 engaging. The value entered in the register identifies the master value . When the master phase matches the programmed value, bit b231.0 is set to 1, then the slave engages to the master with a trend generated by TAB0.	W	±14000 [rpm]	0	1rpm
Pr249:248		W	2÷4500 [ms]	500	1ms
Pr251:250		W	±2 ³¹	0	1
Pr253:252		W	±2 ³¹	0	1
Pr281:280	Trap. Positioner counter.	W	$\pm 2^{31}$	0	1

Par.	Description	Field	Range	Def.	Res.
Pr283:282	CAM1 generator counter	W	$\pm 2^{31}$	0	1
Pr285:284	CAM2 generator counter	W	$\pm 2^{31}$	0	1
Pr287:286	Speed mode counter	W	$\pm 2^{31}$	0	1
Pr289:288	Global counter (sum of all enabled generators	W	$\pm 2^{31}$	0	1
	POS+SM+CAM1+CAM2)				


Par.	Description	Field	Def.
b230.0	(1) bypasses Master1 change linking ramp (0) Ramping.	W	0
b230.2	Enables Master1 displacement from profile generator	W	0
b230.3	Enables Master2 displacement from profile generator	W	0
b230.4	Enables positioner in the counter (Pr281:280)	W	0
b230.5	EnableCAM1 generator in the counter (Pr283:282)	W	0
b230.6	Enables CAM2 generator in the counter (Pr285:284)	W	0
b230.7	Enables speed mode in the counter (Pr287:286)	W	0
b230.8	Enables positioner counter (Pr281:280) in the global counter (Pr289:288)	W	0
b230.9	Enables CAM1 counter (Pr283:282) in the global counter (Pr289:288)	W	0
b230.10	Enables CAM2 counter (Pr285:284) in the global counter (Pr289:288)	W	0
b230.11	(Pr289:288)	W	0
b230.12	Enables positioner counter (Pr281:281) in the position reference (Pr 131:130)	W	0
b230.13	Enables CAM1 counter (Pr283:282) in the position reference (Pr 131:130)	W	0
b230.14	Enables CAM2 counter (Pr285:285) in the position reference (Pr 131:130)	W	0
b230.15	Enables speed mode counter (Pr287:286) in the position reference (Pr 131:130)	W	0
b231.0	Activates table Tab0 to the Master phase set in (Pr247:246). When the bit is 1, TAB0 is enabled. The table is enabled when the slave- master engagement level is programmed in parameter Pr247:246.	W	0
b231.1	Activates table Tab1 to the Master phase set in (Pr249:248). When the bit is 1, TAB1 is enabled. The table is enabled when the slave- master engagement level is programmed in parameter Pr249:248.	W	0
b231.2	Activates table Tab2 to the Master phase set in (Pr251:250). When the bit is 1, TAB2 is enabled. The table is enabled when the slave- master engagement level is programmed in parameter Pr251:250.	W	0
b231.3	Activates table Tab3 to the Master phase set in (Pr253:252). When the bit is 1, TAB3 is enabled. The table is enabled when the slave- master engagement level is programmed in parameter Pr253:252.	W	0
b231.4	Immediate activation of Tab0. When the bit is set to 1, TAB0 is immediately engaged.	W	0
b231.5	Immediate activation of Tab1. When the bit is set to 1, TAB1 is immediately engaged.	W	0
b231.6	Immediate activation of Tab2. When the bit is set to 1, TAB2 is immediately engaged.	W	0
b231.7	Immediate activation of Tab3. When the bit is set to 1, TAB3 is immediately engaged.	W	0

Par.	Description	Field	Def.
b231.8	Signals Tab0 is active in CAM1 generator. When TAB0 is used in	R	0
	the cam generator, the bit is 1.		
b231.9	Signals Tab1 is active in CAM1 generator. When 1s used in the cam	R	0
	generator, the bit is 1.		
b231.10	Signals Tab2 is active in CAM1 generator. When TAB2 is used in	R	0
1001 11	the cam generator, the bit is 1.	D	0
b231.11	Signals Tab3 is active in CAM1 generator. When TAB3 is used in the same generator, the bit is 1	R	0
b221 12	the cam generator, the bit is 1. Enables automatic table switching sequence	W	0
	Command used to activate switching sequence to Tab0	W	0
	Command used to activate switching sequence to Tabb	W	0
			0
-	Immediate command and CAM2 engage/released state	W	-
b232.0	Type 1 positioner reset command (Pr211:210=Pr201:200=0)	W	0
b232.1	Type 2 positioner reset command (Pr211:210=Pr201:200=Pr131=130)	W	0
b232.2	Type 3 positioner reset command	W	0
	(Pr211:210=Pr201:200=Pr131=130=Pr133:132)		
b232.3	Speed mode reset command (Pr187=0)	W	0
b232.4	CAM1 selector to select Master 1 or 2	W	0
b232.5	CAM2 selector to select Master 1 or 2	W	0
b232.6	Activates CAM1 engage to the Master phase set in (Pr197:196).	W	0
b232.7	Activates CAM1 release to the Master phase set in (Pr199:198).	W	0
b232.8	Immediate command and CAM1 engage/released state	W	0
b232.9	Enables dummy table in Tab3 with value set in Pr184 in CAM1	W	0
b232.10	Enables dummy table in Tab3 with value set in Pr185 in CAM2	W	0
b232.11	Command engaging to CAM2 master phase 0	W	0
b232.12		W	0
b232.13	Single shot execution command (one module) to the CAM2 master	W	0
	phase 0.		
b232.14	Selection of table to be performed in CAM2. The state of this bit,	W	0
	together with bit b232.15, identifies the selected table (see table		
	below*).		
b232.15	▲	W	0
	together with bit b232.14, identifies the selected table (see table		
1.000.0	below*).	***	0
b233.0	Theoretical trapezoidal profile running.	W	0
b233.1	Command used to update the table and module in CAM2	W	0
b233.8	Enables positioner speed FFW	W	0
b233.9	Enables CAM1 generator speed FFW	W	0
b233.10	Enables CAM2 generator speed FFW	W	0

* Table Selection	b232.15	b232.14
TAB0	0	1
TAB1	1	0
TAB2	1	1
TAB3	0	0

13.5 Position control via CanBus (operating mode 140)

If operating mode 140 is enabled, Hi-drive will execute a position loop of a proportional type with feed-forward. In this case, the profile generator is considered external and must send the information about the position and speed reference via CanBus in accordance with the SBCCAN protocol (see section on CanBus).

Decimal parameters

Par.	Description	Field	Range	Def.	Res.
Pr182	Speed reference OM120. This is the feed-forward	W	-32768	0	1
	value received via the CanBus. When the SYNC		÷32767		
	(b230.15=1) is received, Pr182 will be copied to Pr185				
	and will become active.				
Pr183	Cyclic command OM140. Command parameter	W	-32768	0	1
	managed by Pico-PLC. (see section "SBCCAN").		÷32767		
Pr184	Cyclic state OM140. Status parameter managed by	W	-32768	0	1
	Pico-PLC. (see section "SBCCAN").		÷32767		
Pr185	Speed feedforward. The value of this parameter is	W	-32768	0	1
	summed at the output of the position loop in order to		÷32767		
	obtain the speed request Pr6.				
Pr201:200	Position reference via CanBus. This is the position	R	$\pm 2^{31}$	0	1
	reference received via the CanBus. When the SYNC				
	(b230.15=1) is received, Pr200:201 will be copied to				
	Pr130:131 and will become active.				

Par.	Description	Field	Range	Def.	Res.
Pr203:202	Motor position (feedback9 via the CanBus. When the SYNC (b230.15=1) is received, Pr132:133 will be copied to Pr203:204 and, if feedback transmission has been enabled (b230.2=1), it will automatically be transmitted via the CanBus.			0	1

Par.	Description	Field	Def.
b230.0	8 byte response message. Cyclic response message. When the bit is 1,	W	0
	the status is made by the 16 bits in Pr184. Otherwise, when the bit is 0,		
	the status contains only the first 8 bits of parameter Pr184.		
b230.2	Enabling FBK transmission to sync0. Enables fbk response to sync0.	W	1
	If = 1, when the type 0 SYNC is received, $Pr202:203$ will be		
	transmitted via the CanBus.		
b230.3	6/7 byte response message. If bit0=0, the response message will have	W	0
	7 bytes; If bit 0=1,the response message will have 6 bytes.		
b230.6	Enabling FBK transmission to sync1. Enables fbk response to sync1.	W	1
	If = 1, when the type 1 SYNC is received, $Pr202:203$ will be		
	transmitted via the CanBus.		
b230.7	FFW calculation. Calculates the ffw component from position	W	0
	reference.		
b230.15	Watchdog sync. Sync receive Watchdog (set any time a message is	RW	0
	received).		

13.6 Additional useful functions

13.6.1 Capturing values

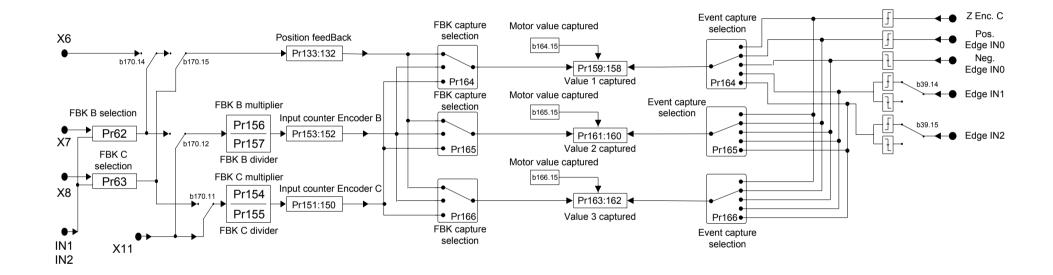
Three event-capturing functions are available to capture either the position fbk or either encoder inputs (B or C). These functions can be programmed both in terms of the value to be captured, that can be alternatively:

- POSITION LOOP FBK,
- ENCODER B,
- ENCODER C,

and in terms of the event when the value must be captured, that can be alternatively:

- zero encoder point dog (encoder in connector)
- rising edge of digital input IN0
- falling edge of digital input IN0
- digital input IN1 edge (programmable rise/fall through b39.14)
- digital input IN2 edge (programmable rise/fall through b39.15)

When a synchronous motor with speed feedback from an incremental encoder is used, any time the unit is powered up a phasing procedure will have to be carried out. The phasing process may end (if Pr65.3=1) with a "fine" phasing on the input encoder zero point dog. In this case, the encoder will need to be mechanically phased when it is installed on the motor.


As sinces encoders can be used encoders with a number of sines per revolution corresponding to 2 elevated to the n^{th} power.

Through the position FBK the motor position can be identified and saved in specific registers. The drive allows to chose where to capture the value, in which of three registers to save it and what type of event shall prompt the capture of the value.

Parameters Pr164, Pr165 and Pr166 are used to manage events, registers and captured values:

- bits 0 and 1 define which FBK shall be used to capture the value. The setting of these bits therefore determines the data input;
- bits 2, 3 and 4 define the selection of the event that prompts the value capture: that is, these bits identify the event that shall determine the timing of the value capture;
- bit 15 controls the value capture. This means that, any time this bit is 1, a value has been captured. This bit, however, is not self-resetting and its status must be changed (through Pico-PLC or serial command) in order to be able to see when the next values are sensed.

Event capture

Decimal	parameters
Deennar	parameters

Par.	Description	Field	Range	Def.	Res.
Pr151:150	Encoder C input counter. Counter dedicated to	R	-32768	0	1
	reference input from C FBK.		÷32767		
Pr153:152		R	-32768	0	1
	reference input from B FBK.		÷32767		
Pr154	Encoder C position numerator. Using this parameter	W	-32768	1	1
	and Pr155, the user can set the desired input reference		÷32767		
	frequency ratio.				
Pr155	Encoder C position enumerator. Using this	W	-32768	1	1
	parameter and Pr154, the user can set the desired input		÷32767		
	reference frequency ratio.				
Pr156	Encoder B position numerator. Using this parameter	W	-32768	1	1
	and Pr157, the user can set the desired input reference		÷32767		
	frequency ratio.				
Pr157	Encoder B position denominator. Using this	W	-32768	1	1
	parameter and Pr156, the user can set the desired input		÷32767		
	reference frequency ratio.				
Pr159:158		R		0	1
Pr161:160	Captured value 2. Register containing value 2.	R		0	1
Pr163:162	Captured value 3. Register containing value 3.	R		0	1

Par.			Γ	Description			Field	Def.
b164.Y	selection of	captu	re objec	ct 1. The setting of	bits defin	es the	W	
				to be captured.				
b164		_21				•		
object to	o be captured:	bit1	bit0	Capture event	bit4	bit3	bit2	2
ENC A	<i>.</i>	0	1	Z ENC AUX	0	0	0	
ENC B		1	0	Not valid	0	0	1	
Not valid		1	1	POS EDGE IN0	0	1	0	
1.00 valia	•	-		NEG EDGE IN0	0	1	1	
				EDGE IN1	1	0	0	
				EDGE IN2	1	0	1	
						Other not	valid	
b164.15				is that a value has bee			R	0
	bit has no self after a first va Capture 2 se	f reset lue ha lectio	ting cap s been c n. The s	abilities and therefore aptured. acting of these bits do	stays set	to "1"	R W	0
b164.15 b165.Y	bit has no self after a first va	f reset lue ha lectio	ting cap s been c n. The s	abilities and therefore aptured. aptured of these bits de aptured.	e stays set efines the	to "1" object	W	
b165.Y b165	bit has no self after a first va Capture 2 se and the type o	f reset lue ha lection f ever	ting cap tis been c n. The s to be c	abilities and therefore aptured. aetting of these bits de aptured. Capture event	stays set	to "1"		
b165.Y b165 object to	bit has no self after a first va Capture 2 se and the type o	f reset lue ha lection f even bit1	ting cap tis been ca n. The s to be c bit0	abilities and therefore aptured. aptured. Capture event Z ENC AUX	e stays set efines the Bit4 0	to "1" object Bit3 0	W	
b165.Y b165 object to FBK POS	bit has no self after a first va Capture 2 se and the type o	f reset lue ha lectio f ever bit1	ting cap s been c n. The s at to be c bit0 0	abilities and therefore aptured. setting of these bits de aptured. Capture event Z ENC AUX Not valid	e stays set efines the Bit4 0 0	to "1" object Bit3	W Bit2 0 1	
b165.Y b165 object to FBK POS ENC A	bit has no self after a first va Capture 2 se and the type o	f reset lue ha lectio f even bit1 0 0	ting cap s been c n. The s at to be c bit0 1	abilities and therefore aptured. setting of these bits de aptured. Capture event Z ENC AUX Not valid POS EDGE IN0	stays set efines the Bit4 0 0 0	to "1" object Bit3 0 0 1	W Bit2 0 1 0	
b165.Y b165 object to FBK POS ENC A ENC B	bit has no self after a first va Capture 2 se and the type o o be captured:	f reset lue ha lectio f even bit1 0 0 1	ting cap s been c n. The s at to be c bit0 0 1 0	abilities and therefore aptured. setting of these bits de aptured. Capture event Z ENC AUX Not valid	stays set effines the Bit4 0 0 0 0 0	to "1" object Bit3 0 0 1 1	W Bit2 0 1 0 1 0	
b165.Y b165 object to FBK POS ENC A	bit has no self after a first va Capture 2 se and the type o o be captured:	f reset lue ha lection f even bit1 0 0	ting cap s been c n. The s at to be c bit0 1	abilities and therefore aptured. etting of these bits de aptured. Capture event Z ENC AUX Not valid POS EDGE IN0 NEG EDGE IN0 EDGE IN1	stays set effines the Bit4 0 0 0 0 1	to "1" object Bit3 0 0 1 1 0	W Bit2 0 1 0	
b165.Y b165 object to FBK POS ENC A ENC B	bit has no self after a first va Capture 2 se and the type o o be captured:	f reset lue ha lectio f even bit1 0 0 1	ting cap s been c n. The s at to be c bit0 0 1 0	abilities and therefore aptured. etting of these bits de aptured. Capture event Z ENC AUX Not valid POS EDGE IN0 NEG EDGE IN0	stays set effines the Bit4 0 0 0 0 1	to "1" object Bit3 0 0 1 1	W Bit2 0 1 0 1 0 1 0 1 0	

Par.		Description							
b165.15 Warning bit. This bit warns that a value has been captured. The bit has no self resetting capabilities and therefore stays set to "1" after a first value has been captured.							R	0	
b166.Y Capture 3 selection. The setting of these bits defines the object and the type of event to be captured.							W		
<u>b166</u>					Contura avant	Bit4	Bit3	B Bit2	,
object to	be captured:	bit1	bit0		Capture event Z ENC AUX	DIL4		$\frac{\mathbf{D}\mathbf{I}\mathbf{I}\mathbf{I}}{0}$	<u> </u>
FBK POS	5	0	0		Not valid	0	0	1	
ENC A		0	1		POS EDGE IN0	0	0	0	
ENC B		1	0		NEG EDGE INO	0	1	1	
Not valid		1	1		EDGE IN1	1	0	0	
					EDGE IN2	1	0	1	
					ED GE II (2	(Other not	valid	
b166.15		f reset	ting ca	pabilit	t a value has been ies and therefore	n capture	d. The	R	0

13.6.2 Programmable outputs

Two programmable analogue outputs are available in terminal block X5: parameters Pr50 and Pr52. The scale of the 2 analogue outputs has range between -2048 and +2048, corresponding to $\pm 10V$. An exception is made when Pr0 is monitored (in default condition); in this case the maximum output voltage is 8.54V when the speed in Pr0 reaches the speed value of Pr32. The output scale therefore varies according to the value of parameter Pr32 (see formula). The scale can also me changed by parameters Pr51 and Pr53.

$$\frac{Pr50=Pr0}{Pr50=Pr0}, I \text{ will get:}$$

$$V_{an.out} = \frac{(\text{value of the Pr pointed from Pr 50}) \bullet 8,54V}{Pr 32 \bullet 2^{Pr 51}}$$

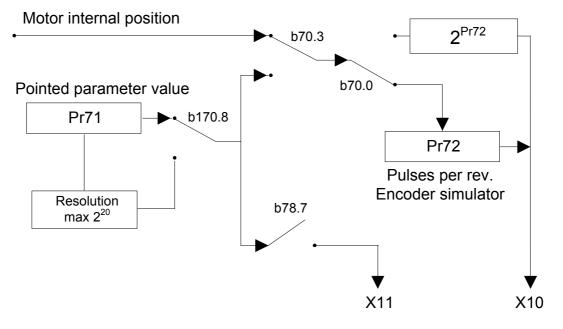
$$V_{an.out} = \frac{(\text{value of the Pr pointed from Pr 52}) \bullet 8,54V}{Pr 32 \bullet 2^{Pr 53}}$$

In the other cases:

$$V_{an.out} = \frac{(\text{value of the Pr pointed from Pr 50}) \bullet 10V}{2048 \bullet 2^{\text{Pr 51}}} \qquad V_{an.out} = \frac{(\text{value of the Pr pointed from Pr 52}) \bullet 10V}{2048 \bullet 2^{\text{Pr 53}}}$$

13.6.3 Encoder simulation

The simulation of encoder pulses can be seen on two different connectors, whereas the generated signal can be taken either from the motor shaft position or from a pointed parameter.


When the value is read from the motor shaft position, the encoder simulation can set the number of pulses per revolution (Pr72 that can range from 4 to 65535). If grater resolutions are required, it is possible to opt for an exponential setting for 2 elevated to the nth power: the maximum value is 18 (Pr72=18, that is 2^{18} , as the greatest value that can be set). The choice between these two systems can be made through bit b70.0.

Bit b70.3 allows to select the type of signal used in the simulation generation.

- When the motor shaft position is used, the value is always read at the maximum resolution: 2^{20} .
- When a pointed parameter is used, Pr71, the rating is read in its value, and therefore with a resolution lower than 2^{20} . Therefore the reading must be considered as a part of a revolution. However, if the value read by the pointed parameter is converted to the maximum resolution, the significance of the reading does not change

A zero encoder trace is also generated at trace C.

Par.	Description	Field	Range	Def.	Res.
Pr72	Enc. Simulation pulses per revolution. If b70.0=0,	W	$0 \div$	1024	1
	values range from 4 to 65535 pulses per revolution; if		+32767		
	b70.0=1 is the exponent and the maximum value that can				
	be entered is 18, Default=1024 is the number of pulses				
	per revolution used in the encoder simulation. The				
	maximum frequency is 400 kHz. [F _{in} =(number of				
	encoder pulses) * (rpm speed) / 60].				

Par.	Description	Field	Def.
b170.8	Encoder out simulation. (1) enc out simulation generation from	W	0
	parameters scaled on a position Loop resolution.		

13.6.4 Motor cogging compensation

At lower speed levels, motor rotation can be "disturbed" by a *cogging* effect.

The drive can mitigate this effect. Before activating this function, go through the following steps:

- initial conditions:
 - o no alarm is active, Pr23=0;
 - o parameter Pr181=0;
 - o enable the drive;
 - the motor rotation speed is ≤ 2 rpm
- *motor cogging mapping calculation:*
 - issue command **b42.7=1**

At this stage the drive automatically creates a table containing useful data to compensate motor cogging.

The calculating function ends when bit b42.7 returns to"0". At this point the motor can be stopped.

In order to enable *motor cogging compensation*, set bit **b39.10=1**.

N.B. The table that the drive has generated during the calculation of cogging mapping is not deleted when default parameters are loaded. In order to modify these data, repeat the mapping calculation.

14 PROGRAMMING DIGITAL INPUTS AND OUTPUTS

14.1 The Pico-PLC

Never activate the saving of PLC instructions while the drive is enabled

The internal Pico-PLC is used to connect the external world (inputs/outputs) to the Hi-drive parameter system. The PLC can be used to copy digital input to a binary parameter, to copy a binary parameter to a digital output and to execute mathematical and Boolean operations. The PLC program must be entered as a list of instructions either using the keypad or via serial link (instruction list and ladder) using a PC and an interface program (MotionWiz). The default parameter settings (b42.12) correspond to a program (default Pico PLC, see Appendix D). The main features of the Pico-PLC are:

Program steps	256
scanning time	6.144 ms
number of timers	2
number of instructions	15
stack depth	1
mathematical operations	16 / 32 bits

Par.	Description	Field	Range	Def.	Res.
Pr92	First PLC timer. Every 6.144 ms, if Pr92 is not	W	0÷	0	
	0, it is decreased; if it is = 0 , b94.1 is set to 1.		65635		
Pr93	Second PLC timer. Every 6.144 ms, if Pr93 is	W	0÷	0	
	not 0, it is decreased; if it is = 0, b94.2 is set to 1.		65635		
Pr96	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		
Pr97	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		
Pr98	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		
Pr99	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		
Pr100	CAN PLC 1 data block. A parameter that the	R	-32768	0	1
	user can use to exchange data through the block		÷32767		
	sync of the SBCCAN protocol via Bridge				
	Profibus and DeviceNet. This parameter is used to				
	receive (see sections about "SBCCAN" and				
	"CANOPEN").				
Pr101	CAN PLC 2 data block. A parameter that the	R	-32768	0	1
	user can use to exchange data through the block		÷32767		
	sync of the SBCCAN protocol via Bridge				
	Profibus and DeviceNet. This parameter is used to				
	receive (see sections about "SBCCAN" and				
	"CANOPEN").		<u> </u>		

Decimal PLC PARAMETERS

Par.	Description	Field	Range	Def.	Res.
Pr102	CAN PLC 3 data block. A parameter that the	R	-32768	0	1
	user can use to exchange data through the block		÷32767		
	sync of the SBCCAN protocol via Bridge				
	Profibus and DeviceNet. This parameter is used to				
	receive (see sections about "SBCCAN" and				
	"CANOPEN").				
Pr103	CAN PLC 4 data block. A parameter that the	R	-32768	0	1
11100	user can use to exchange data through the block		÷32767		
	sync of the SBCCAN protocol via Bridge				
	Profibus and DeviceNet. This parameter is used to				
	receive (see sections about "SBCCAN" and				
	"CANOPEN").				
Pr104	CAN PLC 5 data block. A parameter that the	W	-32768	0	1
	user can use to exchange data through the block		÷32767		
	sync of the SBCCAN protocol via Bridge				
	Profibus and DeviceNet. This parameter is used to receive (see sections about "SBCCAN" and				
	"CANOPEN").				
Pr105	CAN PLC 6 data block. A parameter that the	W	-32768	0	1
F1105	user can use to exchange data through the block	**	÷32767	U	1
	sync of the SBCCAN protocol via Bridge		. 52707		
	Profibus and DeviceNet. This parameter is used to				
	receive (see sections about "SBCCAN" and				
	"CANOPEN").				
Pr106	CAN PLC 7 data block. A parameter that the	W	-32768	0	1
	user can use to exchange data through the block		÷32767		
	sync of the SBCCAN protocol via Bridge				
	Profibus and DeviceNet. This parameter is used to				
	receive (see sections about "SBCCAN" and				
	"CANOPEN").	** 7			
Pr107	CAN PLC 8 data block. A parameter that the	W	-32768	0	1
	user can use to exchange data through the block		÷32767		
	sync of the SBCCAN protocol via Bridge Profibus and DeviceNet. This parameter is used to				
	receive (see sections about "SBCCAN" and				
	"CANOPEN").				
Pr109:108	Spare data. Dedicated to CanOpen, this	W	-32768	0	
11109.100	parameter contains the message with the data to		÷32767	Ŭ	
	be sent.				
Pr110	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		
Pr111	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		
Pr112	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		
Pr113	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767	_	
Pr114	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).	DW	÷32767		
Pr115	User parameter. A parameter that can be stored	RW	-32768	0	1
D 444	by the user (word).	DUZ	÷32767		
Pr116	User parameter. A parameter that can be stored	RW	-32768	0	1
	by the user (word).		÷32767		

Par.	Description	Field	Range	Def.	Res.
Pr117	User parameter. A parameter that can be stored by the user (word).	RW	-32768 ÷32767	0	1
Pr118	User parameter. A parameter that can be stored by the user (word).	RW	-32768 ÷32767	0	1
Pr119	User parameter. A parameter that can be stored by the user (word).	RW	-32768 ÷32767	0	1
Pr121	Constant value = -1. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	-1	1
Pr122	Constant value = 0. Double word. Adjustable parameter. the constant value can be modified and stored.	RW	-32768 ÷32767	0	1
Pr123	Constant value = 1. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	1	1
Pr124	Constant value = 2. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	2	1
Pr125	Constant value = 10. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	10	1
Pr126	Constant value = 100. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	100	1
Pr127	Constant value = 1000. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	1000	1
Pr128	Constant value = 1024. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	1024	1
Pr129	Constant value = 4096. Double word. Adjustable parameter: the constant value can be modified and stored.	RW	-32768 ÷32767	4096	1

Note: parameters Pr121 to Pr129 cannot be combined in a double word (the PLC considers them as 32bit with sign extension)

PLC binary parameters

Par.	Description	Field	Def.
b90.0	input 0.	R	0
b90.1	input 1.	R	0
b90.2	input 2.	R	0
b90.3	input 3.	R	0
b90.5	input 4.	R	0
b90.x	bit that can be stored. If X is greater than 5, the bit can be stored by the user. Available bits are b90.5 to b90.15.	RW	0
b91.0	output 0.	W	0
b91.1	output 1.	W	0
b91.2	Relay output. Controls the status of the relay output in terminal block X5.	W	0
b91.y	Available bit. If Y is greater than 3, the bit is available to the user. Available bits are b91.4 to b91.15 and cannot be stored.	W	0
b94.0	Forces a 32 bit double word formatted operation (self-resetting). When the unit is powered on, this is 0. If it is set to 1, the first mathematical operation executed by the Pico-PLC is done by using three double word type operands. After the execution of the operation, b94.0 is automatically set to 0. If the parameters used are known as being in double format (except parameters dedicated to operating modes, i.e. Pr181 to Pr250), double word format is implicit. As for operating mode parameters, double word format is implicit only in parameters Pr200 to Pr229.	W	0
b94.1	timer 1. (1) if timer 1 has expired. Equal to 1 if $Pr92 = 0$.	R	0
b94.2	timer 2. (1) if timer 2 has expired. Equal to 1 if $Pr93 = 0$.	R	0
b94.3	operation result <0. (1) if the result of the last algebric operation is < 0 .	R	0
b94.4	algebric operation result =0. (1) if the result of the last algebric operation is $= 0$.	R	0

PLC INSTRUCTIONS

Pa.y	LD	Pa.y	loads the y bit of the Pa parameter on the stack
Pa.y	LDN	Pa,y	loads the negated y bit of the Pa parameter on the stack
Pa.y Pa.y	OUT	Pa,y stack	sets the y bit of the Pa parameter to the value loaded on the
Pa.y	OUTN	Ра,у	places the y bit of the Pa parameter to the value of stack negating it
Pa.y Pa.y RST Pa.y Pa.y	SET _RES AND	Pa,y Pa,y Pa,y	if the stack = 1, the y bit of the Pa parameter is set to 1 if the stack = 1, the y bit of the Pa parameter is set to 0 if the bit loaded on the stack contains the result of the logical AND operation between itself and the y bit of the Pa
 Pa.y ──┤∕├──	ANDN	Pa,y	parameter the bit of the stack contains the result of the logical AND operation between itself and the y bit of the negated Pa
Pa.y	OR	Pa,y	parameter the bit loaded on the stack contains the result of the logical OR operation between itself and the y bit of the Pa parameter
Pa Pb Pc	ORN	Pa,y	the bit on the stack contains the result of the logical OR operation between itself and the y bit of the negated Pa
ADD Pa Pb Pc	ADD	Pa, Pb, Pc	parameter if the bit on the stack = 1, the addition operation is executed on the parameters in which: $Pc = Pa + Pb$
Pa Pb Pc	SUB	Pa, Pb, Pc	if the bit on the stack = 1, the subtraction operation is executed on the parameters in which: $Pc = Pa - Pb$
MUL	- MUL	Pa, Pb, Pc	if the bit on the stack = 1, the multiplication operation is
Pa Pb Pc	DIV	Pa, Pb, Pc	executed on the parameters in which: $Pc = Pa \cdot Pb$ if the bit on the stack = 1, the division operation is executed on the parameters in which: $Pc = Pa / Pb$
	-END		end of program

FUNCTIONAL DESCRIPTION

The Pico-PLC program is scanned every 6.144 milliseconds. Based on this sampling, the inputs are first read, then the two timers (Pr92 Pr93 b94.1 and b94.2) are updated, the user program is scanned and finally outputs are updated. For this reason, both input reading and output setting can vary by 6.144 ms with respect to the physical event. If the microprocessor is overloaded with work (the operating mode is active, there are frequent serial requests and the PLC program is long), it may take more than 6.144 milliseconds to scan the entire PLC program.

All the instructions of the Pico-PLC with the exception of the arithmetic instructions are single bit instructions. The available stack has a depth of only one bit.

The LD (LDN) instruction loads the bit defined as an operand on the stack, while all the other logical instructions work on the stack. Arithmetic instructions are executed only if the stack bit is set to 1.

For user convenience, truth tables of logical operations are given below.

AND logical operation				OR	logical opera	ation
bit A	bit B	result	bit A bit B res			result
0	0	0		0	0	0
0	1	0		0	1	1
1	0	0		1	0	1
1	1	1		1	1	1

The respective denied ANDN and ORN operations follow the same logic, except that the denied value of the specified bit will be used.

12 bits from b90.4 to b90.15 are reserved on the PLC and can be stored. 14 additional bits from b91.2 to b91.15 are available on the PLC but cannot be stored. They are always set to 0 when the converter is powered on.

There are 14 word type user parameters, namely Pr95 to Pr99 and Pr110 to Pr119. They can be stored and used as double word parameters.

Parameters Pr100 to PrP107 are dedicated to data exchange through the block sync of the SBC CAN protocol (used to exchange data via Profibus Device Net bridges). The Pico-PLC includes 9 constants for arithmetic operations, that is Pr121 to Pr129. When the default parameters are loaded, the constants have the values shown in the table and can be modified and stored with different values. These parameters are already programmed to be considered as a double word.

When arithmetic instructions (ADD, SUB, MUL, DIV) are used, consider that the operators are assumed to be words and are signed. If a double word operation is required, set b94.0 = 1 before executing the operation. After the operation, the PLC will automatically set this bit to 0. Double parameters are treated as double words, so that in an operation such as [ADD 121,122,212] the result -1 will be written in the double word Pr212:213 without having to set b94.0=1 before the operation. If Pr100=-1 and Pr101=0 the operation [ADD 100,122,212] will give as a result Pr212:213=-1, while the same operation executed with b94.0=1 will assume Pr101 as the high word of the double word Pr100:101 and the result will be Pr212:213=65535. If the parameters used are known as being in double word format (except parameters dedicated to operating modes, i.e. Pr 181 to Pr 250), double word format is implicit. As for operating mode parameters, double word format is implicit only in parameters Pr200 to Pr229.

Example: ADD 100 122 212 in double word.

Pr100=-1; Pr101=0, in double word becomes Pr101:100, where Pr101 is the high word and Pr100 is the low word (H=0:L=-1), that is = 65535.

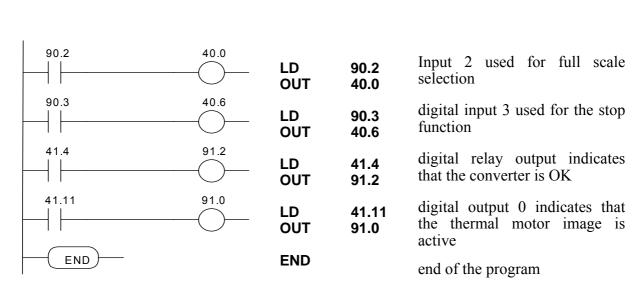
Pr122=0; this is a 0 value constant considered in double word format (it will not be combined with Pr123 to form a double word parameter).

The addition result is entered in Pr213:212=65535 (H=0:L=-1), where Pr213 takes the significance of the high word in the double word (H), whereas Pr212 takes the value of the low word (L).

Note that in mathematical operations with double words, only the low word is shown (L), whereas the high word (H), which is the most significant, will appear in the following word.

At the end of each arithmetic operation, b94.3 is set to 0 in case of positive result and to 1 in case of negative result; similarly, b94.4 is set to 1 when the result is zero and to 0 if the result is not zero. These settings remain effective until the next arithmetic operation is executed (the operation is executed only if the stack bit is one).

If the DIV operation is executed on a double word, the most significant part of the result contains the remainder of the division, that is, if b94.0=1 and the operation [DIV 129,127,100] is executed, the result will be Pr100=4 and Pr101=96.


The user can make use of two timers, Pr92 and Pr93. To use the first timer load the time as a number of samplings (6.144 ms) into PR92. For example, Pr92=100 is equal to 614 milliseconds. Pr92 will automatically decrease as time goes by, and bit b94.1 will remain set to zero until the times has not expired; when Pr92=0, b94.1 will be set to 1.

The same is true with the second timer using parameter Pr93 and bit b94.2. Pr92 Pr93 b94.1 and b94.2 are updated only before the Pico-PLC program is scanned.

The maximum number of instructions is 256. Note that arithmetic operations take up the space of two logical operations. If they are used, the maximum number of instructions accepted will be decreased.

The PLC program must always end with the **END** instruction.

The Pico-PLC program can be edited via serial link or directly using the keypad. In this latter case, in order to facilitate program changes, if you want to delete an instruction, go to the instruction to be deleted and press the [+ or -] key. The type of instruction will be displayed. At this point, hold the [S] key and press the [-] key: when both keys are released, the instruction will be deleted. If you want to add an instruction after the In06, go to the next instruction In07 and press the [+ or -] key. The type of instruction will be displayed. At this point, hold the [S] key and press the [+ or -] key. The type of instruction will be displayed. At this point, hold the [S] key and press the [+] key. When both keys are released, an instruction will be entered. In this latter case, make sure that the program does not exceed the maximum instruction number, otherwise the last instructions will be lost. The Pico-PLC program can be edited or modified only when the PLC is in stop (b39.13=0).

14.1.1 Pico-PLC default program

14.2 Serial interface

The converter communication serial links are on asynchronous RS-485/RS-422 lines (port X8), and on serial link RS-232 (port X4 – see par. "Hyper terminal connection" for a connection diagram).

In serial link RS-232, speed can be set by parameter Pr256 (see table below). The address is always set to 0, because only one converter can be connected.

As far as serial link RS-485/RS-422 is concerned, the same serial link can be connected to up to 32 converters, by setting a different serial address in each of them to parameter Pr27. It is also possible to set the transmission speed parameter Pr258 (see table below).

The converters take control of the line only if they are queried by the master.

Pr 256 (RS232) – Pr258 (RS485-422) (decimal base)	b/s	time-out (ms)
0	600	512
1	1200	256
2	2400	128
3	4800	64
5	9600	32
6	19200	16
7	38400	12
8	57600	8

When the speed or the address have been modified, the link must be reinitialized . See parameters below.

Par.	Description	Field	Range	Def.	Res.
Pr256	RS232 serial link speed code. This is the code	W	0÷8	6	1
	used to program the transmission speed.				
Pr258	RS422 serial link speed code. This is the code	W	0÷31	6	1
	used to program the transmission speed.				
Pr259	RS422 serial link address code.	W	0÷31	0	1

Par.	Description	Field	Def.
b79.3	RS232 serial initializing command. Command to reinitialize serial	W	0
	communication whenever the serial link speed value (Pr256) has been modified. The serial link is in any case initialized when the converter is		
	powered on.		
b79.4	RS485/422 serial initializing command. Command to reinitialize serial communication whenever the speed or the address value (Pr258 and Pr259) of the serial link have been modified. The serial link is in	W	0
	any case initialized when the converter is powered on.		

14.3 Communication protocol

The column on the right in the table above shows the time-out value expressed in milliseconds for each communication speed. This is the time within which the message must be sent, beginning from the start of each message (STX). If a message is interrupted after this time, the converter ignores what has been received and waits for the beginning of a new message.

The message consists of several consecutive bits. The format of the bits is the following:

- 1 start bit
- 8 bit of data defined by a following byte enclosed within square brackets
- 1 parity bit (even)
 - 1 stop bit

The structure of the message is the following:

[STX] [CMD+ADDR] [BK+LUN] [PAR] [D0]... [Dn] [CHK] where:

[STX] = TE indicator of transmission start. If a field in the message except STX takes the value \$7E, this field is followed by a 0 (\$00) so that it will not be interpreted as an [STX].

[CMD+ADDR] = command and address of the peripheral device, which is never zero. This data is composed as follows: the first 5 bits (bits 0-4) define the address of the converter (from 0 to 31); the remaining 3 bits (bits 5-7) define the type of message sent, as described in the following table:

CMD	bit 7	bit 6	bit 5	type of message
1	0	0	1	converter response
2	0	1	0	reading a Pico-PLC instruction
3	0	1	1	writing a Pico-PLC instruction
4	1	0	0	read parameter
5	1	0	1	writing a parameter
6	1	1	0	bit modification
7	1	1	1	writing a parameter to all the slaves

[BK+LUN] = the field LUN (first 3 bits) indicates the number of bytes of the sent data (parameter or PLC instruction); it can take the following values: 1, 2 or 4. The value shall not include 0 characters (\$00) after the values corresponding to the transmission start character (\$7E). Each parameter has a length of 2 bytes.

N.B.: Lengths of 2 and 4 are allowed only with even addresses .

The BK field covers the 5 most significant bits and represents the 5 most significant bits of the Pico-PLC parameter address, table or instruction.

[PAR] = write/read address of the PLC parameter, table or instruction (8bit low in the address)

A parameter address is the number of the parameter* 2 on 13 bits: PAR represents the 8 less significant bits of the address, whereas the 5 most significant bits will be written in the BK field. The table used for the electronic cam is allocated in the parameter area at address 4096 to 6151 (the other addresses are reserved and will not be used). PLC instructions are mapped at address 0 to 511, instructions can be accessed through specific commands.

It is also important to consider that the instruction address depends upon the length of the previous instructions, varying between two and four bytes, (see PLC instruction table).

[D0]... [Dn] = data transmitted.

[CHK] = 256 module sum of all the fields, except [STX] (checksum).

Message types $[CMD1] = is \underline{the response message of the converter to a data request}$. The response message has the following format:

[STX] [001+ADDR] [BK+LUN] [PAR] [D0]... [Dn] [CHK] or it can be <u>the confirmation message to a data write or data modify</u>. In this case, the format is the following:

[STX] [001+ADDR]

where ADDR always identifies which converter is answering.

[CMD2] = is the read message of an instruction in the PLC area. The message has the following format:

[STX] [010+ADDR] [BK+LUN] [PAR] [CHK]

[CMD3] = is the write message to an instruction in the PLC area. The message has the following format:

[STX] [011+ADDR] [BK+LUN] [PAR] [D0]... [Dn] [CHK] [CMD4] = is the read message of a parameter. The message has the following format: [STX] [100+ADDR] [BK+LUN] [PAR] [CHK]

[CMD5] = is <u>the write message of a parameter</u>. The message has the following format: [STX] [101+ADDR] [BK+LUN] [PAR] [D0]... [Dn] [CHK]

[CMD6] = is the change bit message of a byte parameter. The message has the following format:

[STX] [110+ADDR] [BK+LUN] [PAR] [D0] [D1] [CHK]

In this case LUN=2 or else two bytes are sent for the data. The first byte is the mask containing the 0s in the positions of the bits to be changed and 1s in the other positions, while the second byte contains 1s in the positions of the bits that are to be set to 1 and 0s in the other positions. The PAR address is that of the parameter (byte) where one or more bits are to be modified. If the parameter is a word and the bit to be modified is one of the first 8 (b0...b7): PAR = the parameter address; otherwise, if the bit to be modified is one of the upper 8 (b8...b15): PAR = the address parameter + 1.

[CMD7] = is the write message of a parameter to all converters connected to the serial link. The message has the following format:

[STX] [11100000] [BK+LUN] [PAR] [D0]... [Dn] [CHK]

The address of the peripheral device (ADDR) must be 0.

Notes:

- The parameters that are displayed on the screen with decimals must be treated as integer values. For example, a value of 978.5 is read and written as 9785.
- All values that are preceded by the \$ symbol are to be understood as hex numbers.

- The value in square brackets identifies the base unit (byte) of the message.
- All messages, to be valid, must be completed within a well-defined time-out which is a function of speed, and must have correct parity and checksum.
- The converter responds to a request or to a data send only if the message has been received correctly. In the case of an error in the message, no response is transmitted. The only exception is message type 7 that is used to send data with a single message to all the converters connected to the serial link.

Initializing and managing the serial link

<u>RS-232</u> the converter is delivered with a 0 address and a speed of 19200 bps (Pr256=6). To modify the configuration, first set the speed in Pr256, then initialize it by issuing the command b79.3. Use command b42.15 to store the configuration.

<u>RS-485/RS-422</u>: the converter is delivered with a 0 address (Pr259=0) and a speed of 19200 bps (Pr258=6). To modify the configuration, first set the speed in Pr258, then the serial address in Pr259 and finally initialize it by issuing command b79.4. Use the command b42.15 to store the configuration.

Accessing PLC instructions

Each Pico-PLC instruction takes 2 or 4 bytes whose format is the following:

Since the maximum length of each instruction in 2 bytes and the total area available in the PLC is 512 bytes, the PLC program can have at the most 256 instructions.

PLC instructions	code	length (in bytes)
LD Pa.y	0	2
LDN Pa.y	1	2
OUT Pa.y	2	2
OUTN Pa.y	3	2
AND Pa.y	4	2
ANDN Pa.y	5	2
OR Pa.y	6	2
ORN Pa.y	7	2
ADD Pa, Pb, Pc	8	4
SUB Pa, Pb, Pc	9	4
MUL Pa, Pb, Pc	10	4
DIV Pa, Pb, Pc	11	4
SET Pa.y	12	2
RES Pa.y	13	2
END	15	2

The first 4 bits (b0..b3) of the first byte in each instruction contain the instruction code (see table above).

In the first 8 logical instructions in the table (LD... ORN) as well as in SET and RES, the remaining 4 bits of the first byte (b4..b7) contain the y value, while the second byte contains the Pa value.

In ADD, SUB, MUL and DIV mathematical instructions, the second byte contains the Pa value, the third byte contains the Pb value, and the fourth byte contains the Pc value. In the END instruction, the second byte is not used.

Instructions must follow each other beginning at address 0h and no byte can be left empty. There is only one program and it is closed by an END instruction.

Serial link usage examples

In order to better understand how to implement the communication protocol via serial link, some examples of each type of message are given below. The values given are only indicative as examples.

First example: reading a 1 byte parameter

Suppose we want to read the value of parameter Pr25 (release software) and that its value is 43. Suppose also that the converter serial address is 0. The following message will be sent: [\$7E][\$80][\$01][\$32][\$B3]

The converter responds with the following message: [\$7E][\$20][\$01][\$32][\$2B][\$7E][\$00]

Second example: reading a 2 byte parameter

Suppose we want to read the reference speed (Pr7) and that its value is 2000. Suppose also that the converter serial address is 1. The following message will be sent: [\$7E][\$81][\$02][\$0E][\$91] The converter responds with the following message: [\$7E][\$21][\$02][\$0E][\$D0][\$07][\$08]

Third example: reading a 1 byte parameter

Suppose we want to select operating mode 110 (Pr181). Suppose also that the converter serial address is 0. The following message will be sent: [\$7E][\$A0][\$09][\$6A][\$6E][\$81] The converter responds with the following message: [\$7E][\$23]

Fourth example: reading a 2 byte parameter

Suppose we want to set the rated current to 2.5 A (Pr33). Suppose also that the converter serial address is 3. The following message will be sent: [\$7E][\$A3][\$02][\$42][\$19][\$00][\$00] The converter responds with the following message: [\$7E][\$23]

Fifth example: setting a bit to 1

Suppose we want to send a command to save the PLC program (b42.14=1). Suppose also that the converter serial is 0. The following message will be sent: [\$7E][\$C0][\$02][\$2B][\$BF][\$40][\$EC] The converter responds with the following message: [\$7E][\$20]

Sixth example: setting a bit to 0

Suppose we want to disable the converter via software (b40.9=0). Suppose also that the converter serial address is 0. The following message will be sent :

[\$7E][\$C0][\$02][\$51][\$FD][\$00][\$10]

The converter responds with the following message:

[\$7E][\$20]

Seventh example: reading a PLC instruction

Suppose we want to set the first PLC instruction as: LD 90.5. Suppose also that the converter serial address is 0. The following message will be sent : [\$7E][\$60][\$02][\$00][\$5A][\$0C]

The converter responds with the following message: [\$7E][\$20]

page 120 of 155

15 FIELD BUS

15.1 SBC Can

The converter has a CanBus interface based on the physical layer ISO/DIS11898. The Data link layer is the full CAN version 2.0 part A (ID 11 bit) and a subset of the application layer SBC Can is used.

The Can-bus on the converter has two operating modes.

The first operating mode is **real time mode**. This is used to establish a real time digital link between the converters and a control unit that provides for path calculations and sends either the position or the speed reference, or both, to the converters. The converters can thus trace the motor actual position (Pb230.2=1). Real time mode is active when Pr181=140.

The second operating mode is **communication mode**. This is used to write or read all parameters of each converter connected to the bus. This function is very useful when you want to use the motion functions that have already been implemented in the base software of the converter. The communication mode is automatically set when $Pr181 \neq 140$.

The Can node address must be set on Pr261 with values ranging from 1 to 15.

The transmission speed is given by a combination of parameters Pr181 and Pr260 as shown in the following table.

Pr260	Pr181≠140 Pr181=140			
0	125 kbps 1 Mbps			
1	1 M	bps		
2	500 k	cbps		
3	250 k	kbps		
4	125 kbps			
5	50 kbps			
6	20 kbps			
7	10 k	bps		

All changes in speed, address or function mode are activated using the b79.5 command or when the converter is powered on again.

Par.	Description	Field	Range	Def.	Res.
Pr260	BAUDRATE CAN. CAN line transmission	W	0÷32767	1	1
	speed programming code.				
Pr261	CAN address. Indicates CAN address value.	W	0÷127	1	1

Par.	Description	Field	Def.
b79.5	CAN initializing command. Command to reinitialize CAN communication whenever the speed or the address value (Pr260 and Pr261) of the CAN line have been changed. This is in any case initialized when the converter is powered on.	W	0

15.1.1 Description of fields in real time mode

Cyclic message from master to slave converter

							Cyc	lic dat	a						
Da	ta len	gth		8/6/4 bytes											
Fie	eld Na	me		Post	ition R	eferen	ce		Spe	ed Ref	erence		Co	mman	d
C	onten	ts		Pr2	00:201	l (32 bi	t)		Pr	182 (1	6 bit)		Pr18	3 (16 1	oit)
							Ide	ntifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	X X X X X 0						0	0	0	1	1	A3

A0:A3 Converter slave address (Pr261), valid values 1..15.

Pr183 is used as a command and can be managed by the Pico-PLC.

Based on the length of the message, the data received are interpreted as follows.

Data length	Contents	Contents	Contents
8	Position reference (4 byte)	Speed reference (2 byte)	Pr183 (2 byte)
6	Position reference (4 byte)	Pr183 (2 byte)	
4	Speed reference (2 byte)	Pr183 (2 byte)	

Synchronism message from master to slave converter

						Sync	hror	nism me	essage							
Da	ta len	gth		1 byte												
Fie	eld Na	me			1	Sync										
C	onten	ts			Sync t	ype (8	bit)									
							Ide	entifier								
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	
0	0	0	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0	

Type 0 synchronism (Sync = 0): each drive activates the speed and position references and saves the current motor position. If b230.2=1, the drive responds with a "*cyclic reply*". Type 1 synchronism (Sync = 1): saves the current motor position. If b230.6=1, the drive

responds with a "cyclic reply".

								Cyclic 1	reply						
Da	ta len	gth							6/7	byte					
Fie	eld Na	me		Address Motor Position Status											
	Data			Pr26	51 (8t	oit)		Pr202:203(32 bit) Pr184							
								Identi	fier						
ID2	ID1	ID0	-					ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	X X X X X				0	0	0	1	0	1	0	A3

Cyclic message from slave converter to master

A0:A3 Converter slave address (Pr261), valid values 1..15.

Parameter Pr184 is used as a status, if b230.3 is = 0, all 16 bits are transmitted if it is = 1, only the first 8 bits are transmitted.

Assuming that b230.0=1, the message will have a total length of 8 bytes and Pr184 will be made of 16 bits whatever is the setting of b230.3. Assuming that b230.0=1, the message will contain the following information:

			Byte	e 0							By	te 7			
7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
MSB									LSB			In3	In2	In1	In0
◀			Tor	que]								•		Input

Multiple cyclic message from master to slave converter

						Μ	ultiC	Cyclic d	ata						
Da	ata len	gth						2,	4,6,8 t	oyte					
Fie	eld Na	ıme		Speed Speed Reference Speed Reference 2 Speed Reference 3										nce 3	
			R	Reference0 1											
0	Conter	nts	Prl	182 (16	6 bit)	Pr	182 (16 bit)	P	P r182 (16 bit)		Pr18	82 (16 l	oit)
				_	_		Ide	ntifier					_		
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
0	A1	A0	Х	X X X X X 0				0	0	0	1	1	1	0	

This type of message holds various information that are going to be addressed to multiple slave converters. To identify the address logic used, see the following table that shows how the speed reference values (Pr 182) are addressed to the various converters, based on the value of A0:A1=group address.

A0:A1	Speed reference 0	Speed reference 1	Speed reference 2	Speed reference 3
0	Drive 1	Drive 2	Drive 3	Drive 4
1	Drive 5	Drive 6	Drive 7	Drive 8
2	Drive 9	Drive 10	Drive 11	Drive 12
3	Drive 13	Drive 14	Drive 15	

			_		Μ	ultiSy	nch	ronism	messa	age					
Da	ta len	gth		1,2,3,4 byte											
Fie	eld Na	me	C	Command 0Command 1Command 2Command 3											d 3
C	onten	ts	Р	Pr183 (8bit) Pr183 (8bit) Pr183 (8bit) Pr183 (8bit)										oit)	
							Ide	entifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
0	0	0	Х	Х	Х	Х	Х	0	0	0	0	0	1	0	0

Multiple synchronism message from master to slave converter

Each drive activates the speed references and stores the current motor position. If b230.2=1,

the drive responds with a "cyclic reply". To this end, consider that, being a message directed to multiple converters, you need to be able to define which converters the "command" (first 8 bits of Pr183) is directed to. This information is reported in the following table:

Drive	Command0	Command 1	Command 2	Command 3
Drive1	YES			
Drive2	YES			
Drive3		YES		
Drive4		YES		
Drive5			YES	
Drive6			YES	
Drive7				YES
Drive8				YES
Drive9	YES			
Drive10	YES			
Drive11		YES		
Drive12		YES		
Drive13			YES	
Drive14			YES	
Drive15				YES

Thus we can conclude that each command is composed of 8 bits and is shared by multiple converters. The user defines the bits within each command by programming the Pico-PLC of each converter.

					Ac	yclic (lata	write o	r req	uest					
Da	ta len	gth													
Fie	eld Na	me		Cmd & Len Data Address											ta
C	onten	ts	5	bit con	nmand	and 3	bit le	ength		16 bit (data ac	ldress		32 bit	data
							Ide	entifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	X X X X X 0						0	0	1	0	0	A3

Acyclic data write or parameter request message from master to slave converter

A0:A3 Slave converter address (Pr261), valid values 1..15.

Cmd & Len	Sub-field	Value	Significance
	Cmd [04]	0	Read request
		1	Write
		2	SET bit $Pr = Pr$.OR. Data
		3	RESET bit Pr = Pr.AND.(.NOT.Data)
		4	TOGGLE bit $Pr = Pr$.XOR. Data
		5-31	Not used
	Len [57]	0-4	Number of significant bytes in the field
			Data

Data Address

This is the address of the parameter involved in the operation (parameter number * 2). The addresses of PLC instructions are ranging from 8192 to 8704. The addresses of CAMMA tables are: (1) from 4096 to 4609, (2) from 4610 to 5123, (3) from 5124 to 5637, (4) from 5638 to 6151.

Data

When the parameter is written, it contains the value of the parameter itself..

If one or more bits are modified, it contains the mask of the bits to be modified. If case of a parameter read request, the field has no significance. In case of PLC program writing, it contains the instruction code (see *Serial interface*).

Acyclic response message to a parameter request from slave converter to master

							Dat	a reply	,							
Da	ta len	gth							5 byte	S						
Fie	eld Na	me		Addr & Spare Data												
ContentsPr26132 bit reply data																
							Ide	ntifier								
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	
A2	A1	A0	Х	Х	Х	Х	Х	0	0	0	1	1	0	0	A3	

A0:A3 Slave converter address (Pr261), valid values 1..15.

						Broa	adca	st data	write							
Da	ta len	gth							7 byte	S						
Fie	eld Na	me		Cmd & Len Data Address Data												
Contents5 bit command and 3 bit length16 bit data address32 bit data													data			
							Ide	entifier								
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	
1	1	1	Х	Х	Х	Х	Х	0	0	1	0	0	0	1	1	

Broadcast write parameter message from master to slave converter

Cmd & Len	Sub-field	Value	Significance
	Cmd [04]	0	Not used
		1	Write
		2	SET bit $Pr = Pr$.OR. Data
		3	RESET bit Pr = Pr.AND.(.NOT.Data)
		4	TOGGLE bit $Pr = Pr$.XOR. Data
		5-31	Not used
	Len [57]	0-4	Number of significant bytes in the field
			Data

Data Address

This is the address of the parameter involved in the operation (parameter number * 2). The addresses of PLC instructions are in the range 8192 to 8704.

The addresses of CAMMA tables are: (1) from 4096 to 4609, (2) from 4610 to 5123, (3) from 5124 to 5637, (4) from 5638 to 6151.

Data

When the parameter is written, it contains the value of the parameter itself..

If one or more bits are modified, it contains the mask of the bits to be modified. In case of PLC program writing, it contains the instruction code (see *Serial interface*).

Alarm message from slave converter to master

							E	rror							
Da	ta len	gth							3 byte	S					
Fie	eld Na	me			1	Addr						Erre	or		
C	Contents Pr261 Pr23														
							Ide	entifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	Х	Х	Х	Х	0	0	0	1	0	0	0	A3

A0:A Slave converter address (Pr261), valid values 1..15.

This type of message will be sent by the converter to the bus if the converter changes its alarm status (alarm 0 = no alarm).

To evaluate the minimum sampling time, use the following formula: $T_{2} = -(Nr + Nt + 5) * 0.12$

 $Tc_{min} = (Nr + Nt + 5) * 0.12$

where: Tc_{min} is the minimum sampling time in milliseconds

Nr is the number of axes that receive the reference

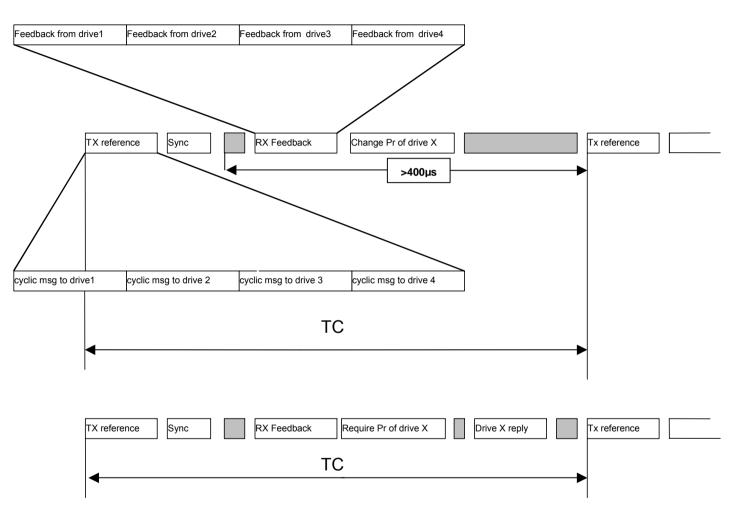
Nt is the number of axes that transmit the feedback

The 0.12 constant is referred to a speed of 1 Mbps

Note 1: In real time mode, you can use bit 230.15, which is set to 1 each time the synchronism and multisynchronism message is received via SBCCAN.

Based on the above considerations, by simply adding a program to the Pico-PLC, you will be able to ensure that the communication between master and slave via CAN-bus is active.

It is important to consider that, in this way, the communication via CAN-bus will be checked every 6.144 [ms] or multiple thereof (minimum time required to complete the scanning of the Pico-PLC program).


It should also be noted that both Pr184 (Status) and Pr183 (Command) must be managed in each converter by an appropriate Pico-PLC program.

Note 2: if cyclic sync and data ≤ 6 msec, the data can come immediately before and after the sync, otherwise the sync shall be kept at least at 150 µsec from the data.

Note 3: in order to transmit multi-cyclic and cyclic data on the same CAN network, keep a minimum distance of 150 μ sec in between. The same principles should be applied to sync and multisync messages.

The typical timing of the SBCCAN in real time mode is shown in the diagram on the next page.

SBCCAN

15.1.2 Description of fields in communication mode

Data write message or parameter request from master to slave converter

						Data	wri	te or re	equest						
Da	ta len	gth							7 byte	S					
Fie	eld Na	me			Cmd	l & Lei	n			Data	a Addro	ess		Data	ì
Contents5 bit command and 3 bit length16 bit data address32 bit data												lata			
							Ide	entifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	Х	Х	Х	Х	0	A4	0	0	1	0	0	A3

A0 A4 Hi-drive slave address (Pr261), valid values 1...31.

Cmd & Len	Sub-field	Value	Significance
	Cmd [04]	0	Read request
		1	Write
		2	SET bit $Pr = Pr$.OR. Data
		3	RESET bit Pr = Pr.AND.(.NOT.Data)
		4	TOGGLE bit $Pr = Pr$.XOR. Data
		5-31	Not used
	Len [57]	0-4	Number of significant bytes in the data field
			Data

Data Address

This is the address of the parameter involved in the operation (parameter number * 2). The PLC instructions have addresses in the range 8192 to 8704. The addresses of CAMMA tables are: (1) from 4096 to 4609, (2) from 4610 to 5123, (3) from 5124 to 5637, (4) from 5638 to 6151.

Data

When the parameter is written, it contains the value of the parameter. If one or more bits are modified, it contains the mask of the bits to be modified. If case of a parameter read request, the field has no significance. In the case of PLC program data writing, it contains the instruction code (see Serial Interface).

Response message to a parameter request from slave converter to master

							Dat	a reply	,							
Da	ta len	gth							5 byte	e						
Fie	eld Na	me		Addr & SpareDataPr261 (8bit)32 bit reply data												
C	onten	ts			Pr26			32	bit rep	oly data	a					
							Ide	entifier								
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	
A2	A1	A0	Х	Х	Х	Х	Х	0	A4	0	1	1	0	0	A3	

A0 A4 Slave converter address (Pr261), valid values 1..31.

Broadcast write parameter message from master to slave converter

						Broa	adca	st data	write						
Da	ta len	gth							7 byte	;					
Fie	eld Na	me			Cmd	& Len	l			Data .	Addres	SS		Data	
C	onten	ts	5	bit con	nmand	and 3	bit le	ength	16	5 bit da	ita add	lress	3	2 bit d	ata
	_						Ide	entifier						_	
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
1	1	1	Х	Х	Х	Х	Х	0	A4	1	0	0	0	1	1
Cmd	l & Le	en Su		d [04]		Val 0 1 2 3	ue	N V S	Not us Vrite SET bi	t Pr =	Pr .O	R. Dat		Г.Data	a)
			Len [[57]		4 5 0-4		Ν	lot us	ed		Pr .X0 ant byt			a field

Data Address

This is the address of the parameter involved in the operation (parameter number * 2). The addresses of PLC instructions are ranging from 8192 to 8704.

Data

The addresses of CAMMA tables are: (1) from 4096 to 4609, (2) from 4610 to 5123, (3) from 5124 to 5637, (4) from 5638 to 6151.

Data

When the parameter is written, it contains the value of the parameter. If one or more bits are modified, it contains the mask of the bits to be modified. In the case of PLC program data writing, it contains the instruction code (see Serial Interface).

							E	rror							
Da	ta len	gth							3 byte	s					
Fie	eld Na	me	Addr Error												
Contents Pr261 Pr23															
							Ide	ntifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	Х	Х	Х	Х	0	A4	0	1	0	0	0	A3

Alarm message from slave converter to master

A0 A4 Slave converter address (Pr261), valid values 1..31.

This type of message will be sent by the converter to the bus if the converter changes its alarm status (alarm 0 = no alarm).

15.1.3 Description of extended message set #2

The extended message set 2 enables the exchange of memory areas between the master and the converters both in communication and real-time modes. Data exchange is still synchronous. The master transmits the data to all converters, which then save it in a temporary buffer. Then the master transmits the synchronism message, and the drives, when they receive this message, will copy the data blocks received from the temporary buffer to the parameter area and will reply to the master with their own parameter sets.

Data send message from master to slave converter

							Blo	ck send							
Da	ta len	gth							8 byte	2					
Fie	eld Na	me							Data						
Contents 64 bit of data															
							Ide	entifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	Х	Х	Х	Х	1	0	0	0	0	0	1	A3

A0:A3 Drive address valid values 1..15.

Data synchronism message from master to slave converter

							Blo	ck sync								
Da	ta len	gth							0 byte	;						
Fie	eld Na	me														
C	onten	ts		No data												
							Ide	entifier								
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	
0	0	0	Х	Х	Х	Х	Х	1	0	0	0	0	0	0	0	

The data received are saved from Pr100 to Pr103, and parameters Pr104 to Pr107 are transmitted using the following message:

Reply from slave converter to master

							Bloc	ck reply	y						
Da	ta len	gth							8 byte	;					
Fie	eld Na	me							Data						
Contents 64 bit of data															
							Ide	entifier							
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	Х	Х	Х	Х	1	0	0	0	0	1	0	A3

A0:A3 Drive unit address valid values 1..15.

Note 1: just like in real time mode, you can use bit 79.14, which is set to1 each time block sync is received via SBCCAN. Based on the above considerations, by simply adding a program to the Pico-PLC, you will be able to ensure that the communication between master and slave via CAN-bus is active.

It is important to consider that, in this way, the communication via CAN-bus will be checked every 6.144 ms or multiple thereof (minimum time required to complete the scanning of the Pico-PLC program).

15.2 CAN Open:

An alternative to the SBCCAN protocol is CANopen with the following implementations and functions:

The Can node address must be set on Pr261 with values ranging from 1 to 127. The transmission speed is given by the setting of parameter Pr260, as shown in the following table.

Pr260	0
0	125 kbps
1	1 Mbps
2	500 kbps
3	250 kbps
4	125 kbps
5	50 kbps
6	20 kbps
7	10 kbps

All changes in speed, address or function mode are activated using the b79.5 command or when the converter is powered on again.

Par.	Description	Field	Range	Def.	Res.
Pr260	BAUDRATE CAN. CAN line transmission speed	W	0÷327	1	1
	programming code.		67		
Pr261	CAN address. Indicates CAN address value.	W	0÷127	1	1

Par.	Description	Field	Def.		
b79.5	CAN initializing command. Command to reinitialize CAN	W	0		
	communication whenever the speed or the address value (Pr260 and				
	Pr261) of the CAN line have been changed. This is in any case				
	initialized when the converter is powered on.				

The following objects are available based on CANopen Pre-defined Connection Set:

Objects	Function code	COB-Ids	Index
NMT object	0000	0x00	-
EMERGENCY object	0001	0x81-0xff	0x1014
SDO (tx) object	1011	0x581-0x5ff	0x1200
SDO (rx) object	1100	0x601-0x67f	0x1200
NMT Error Control	1100	0x701-0x77f	0x100c- 0x100d
(Node guarding)			

NMT object :

NMT state machine (DS301)

NMT Error Control & Boot Up Protocol:

- Boot Up
- Node Guarding

EMERGENCY object :

Below is a description of emergency object implementation:

Emergency message from Drive to master

Emergency message															
Da	ta len	gth		8 byte											
Fie	eld Na	me	Error	or code Err. Reg Drive address Data											
C	onten	ts	16 bit	it code 8 bit error 8 bit address 32 bit reply data											
	Identifier														
ID2	ID1	ID0	-	-	-	-	-	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
A2	A1	A0	Х	Х	Х	Х	Х	0	0	0	1	A6	A5	A4	A3

A0:A6 Drive address (Pr261), valid values 1..127.

A warning message and a pop-up message are available for this object. The latter can be sent by setting an appropriate command.

The alarm message is sent each time that the current alarm status (Pr23) changes, so that when a new alarm occurs (or when the alarms are reset) the value 0x01 is sent to the field Err.Reg, and the least significant byte of the Data field will contain the drive's alarm code. The alarm message transmission can be prevented by setting bit 78.0 to 1.

The Error Code field will contain a specific code based on the different drive alarm:

The Effort Code field will contain a specific code	oused on the
- Er01 (overvoltage) :	0x3210
- Er02 (undervoltage) :	0x3220
- Er03 (overcurrent) :	0x2340
- Er04 (speed fbk alarm) :	0x7310
- Er05 (motor over-temperature) :	0xff07
- Er06 (module over-temperature) : :	0x4310
- Er07 (aux trip 1) :	0xff00
- Er08 (aux trip 2) :	0xff01
- Er10 (checksum PLC) :	0x6310
- Er11 (checksum Parameters):	0x6310
- Er15 (default Parameters) :	0x6320
- Er16 (calibration alarm) :	0xff03
- Er17 (internal alarm type 1) :	0xff08
- Er20 (internal alarm type 2) :	0xff0a
- Er21 (undervoltage 24VDC alarm):	0x5112
- Er22 (ambient over-temperature alarm) :	0x4110
- Er23 (internal alarm type 3) :	0xff0c
- Er24 (braking transistor protection alarm) :	0xff0d
- Er25 (fbk speed loop initialization alarm) :	0xff0e
- Er26 (fbk pos loop initialization alarm):	0xff0f
- Er28 (fbk pos loop alarm) :	0x7320
$E_1 \ge 0$ (for pos loop diamin).	011520

When alarms are reset with b42.10, Error code field will be 0x0000.

A user pop-up message can be sent by setting command b79.12 to 1. In this case, the Error Code field will be 0xFF09 and the Data field will contain the value in Pr108:109. b 79.12 will be reset to 0 once the message has been sent.

SDO(tx/rx) object

Below is a list of the objects in the device dictionary:

Object dictionary:				
Index				
0x1000 : Device typ	pe (30	1) RO		
0x1001 : Error regis	ster	RO		
0x1014 : COB-ID e	merge	ency obj RO		
0x1018 : Identity		RO		
0x100c :Guard time	÷	RO		
0x100d : Life time :	factor	RO		
0x1200 : Server SD	rameters RO			
0x2000-0x2001	:	parameter read/write		
0x2002-0x2003	:	parameter bit set		
0x2004-0x2005	:	parameter bit reset		
0x2006-0x2007	:	Pico-PLC read/write		
0x2008-0x2009	:	TAB 0 table read/write		
0x200A-0x200B : TAB 1 table read/wr				
0x200C-0x200D	0x200C-0x200D : TAB 2 table read/wri			
0x200E-0x200F : TAB 3 table read/wri				

As a general rule, sub_index 0 of indexes 0x2000..0x2005 represents the number of the sub_indexes available, and the subsequent (1..N) sub_indexes represent the parameter number concerned +1.

Sub_index $1 \rightarrow Pr[0]$ Sub_index $2 \rightarrow Pr[1]$ Sub_index $n+1 \rightarrow Pr[n]$

Example of device memory access by SDO: Write Pr80 to the drive:

You will need to write the object by SDO with index-sub_index 0x2000-0x51 (80+1). If the number of bytes written is greater than two, the operation will also change the parameter Pr81.

Read Pr60 from the drive:

You will need to read the object by SDO with index-sub_index 0x2000-0x3d (60+1). The value returned will have a length of 4 bytes, the most significant of which will contain Pr61. If they are not needed, they can simply be discarded.

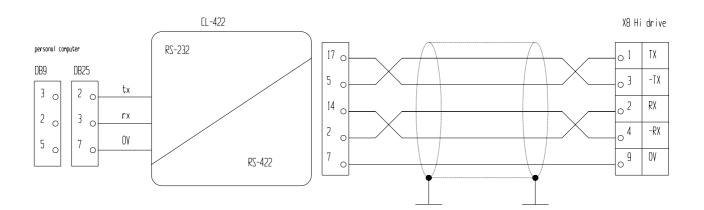
Set bit 4 of Pr40:

You will need to write the object by SDO with index-sub_index 0x2002-0x29 (40+1) with the value (0x0010) that represents in binary the bits involved in the operation, in our case bit 4.

Reset bits 4 and 5 of Pr40:

You will need to write the object by SDO with index-sub_index 0x2004-0x29 (40+1) with the value (0x0030) that represents in binary the bits involved in the operation, in our case bits 4 and 5.

Write bytes 0 and 1 of the Pico-PLC area:


You will need to write the object by SDO with index-sub_index 0x2006-0x01 (0+1) with the value corresponding to the operating code of the instruction to add. For example, the instruction LD 90.0 requires the value 0x00 to be written in byte 0 and 0x5a in byte 1.

16PROGRAMMING THE CONVERTER THROUGH A PC

A serial kit is available to communicate with the converter through a personal computer. The kit includes a RS-422/RS-232 converter with a 220V~ power supply unit and serial link cable. The installation requirements for the freely supplied communication software MotionWiz are a personal computer (PII or higher recommended) running on Windows* 98 or later, a mouse to navigate within the program and a serial link to the converter. The main features of Motion Wiz are:

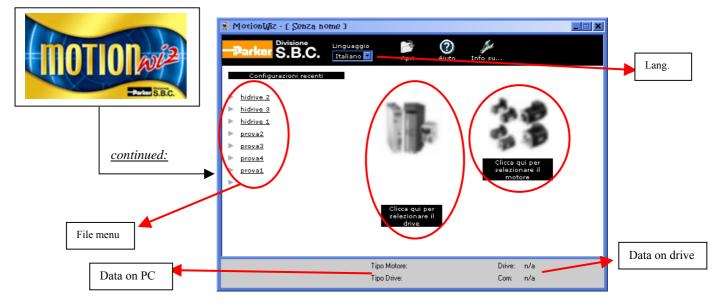
- serial connection to up to 32 converters reading and setting key parameters and converter commands
- reading and setting operating mode parameters and commands
- functional block diagrams
- Pico-PLC programming in text and ladder format
- display of Pico-PLC program during operation
- status of inputs and outputs
- parameter setting storage, including Pico-PLC program in one file
- parameter setting loading, including Pico-PLC program from one of the previously stored files (selectable)
- oscilloscope function

In order to get the line load resistances, connect pin 2 and 6 with a jumper on connector X8 of the last converter connected in series.

*Windows and the Windows logo are registered marks or trademarks of Microsoft Corporation in the United States and/or in other countries.

16.1 MotionWiz

The configuration tool is called "MOTIONWIZ" and is used to program the drive while controlling the whole system in real time. PLC programs can also be edited and new files can be generated.


The first step is to install the program*: click on the icon "SetupMotionWiz.exe"

Follow the instructions that appear during the installation . An icon linking to the program will be generated on your desktop at the end of the installation process :

MotionWiz.exe MotionWiz MFC Application Parker Hannifin divisione S.B.C.

Click on the icon to start the configuration program. The following window will be displayed on your monitor:

It is possible to select the desired language: Italian or English.

How to generate a new file:

to set the data for motor and drive, use the databases provided by the software, that can be accessed through the icons below the figures (when the drive and the motor pictures are out of focus, it means that the relevant data have not been set yet).

Press "ENTER" to access the configuration functions.

How to use an existing file:

the *"file menu*" shows a list of most recent files. To open a file, click on a name in the list Alternatively, using the "**Open**" tab it is possible to "search" previously stored files selecting the relevant route.

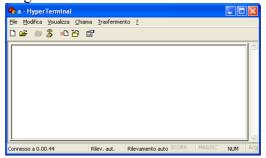
16.2 Hyperterminal connection

16.2.1 Creating and setting a connection

In order to create a connection with Hi-Drive (on port X4) go through the following steps. Launch the HyperTerminal program: start menu \rightarrow programs \rightarrow accessories \rightarrow communications

1. Create a new connection

2. Select port


Connetti a	? 🛛
💫 Hi-Drive Terr	inal
Immettere i dettagli pe	er il numero telefonico da comporre:
<u>P</u> aese:	Italia (39)
Indicativo località:	
<u>N</u> umero di telefono:	
C <u>o</u> nnetti:	СОМ1
	OK Annulla

3. Select communication port settings:

Proprietà - COM1
Impostazioni della porta
Bit per secondo: 19200
Bjit di dati: 8
Parità: Nessuno 💌
Bit di stop: 1
Controllo di flusso: Nessuno
<u>R</u> ipristina
OK Annulla <u>Applica</u>

The Baudrate (Bit per second) depends on the actual Hi-Drive setting, all other values are compulsory.

4. Change terminal settings:

5. In the terminal window, select the menu file \rightarrow properties. Select the following settings

Proprietà - HyperTerminal 🛛 🔹 🔀	
Connetti a Impostazioni	Impost
Tasti funzione, di direzione e combinazioni con CTRL agiscono come	_ Tras
	🗹 🖉 A
II tasto BACKSPACE trasmette	🗹 E
○ CTRL+H ○ CANC ○ CTRL+H, spazio, CTRL+H	Inter
Emulazione:	l <u>n</u> ter
Rilev. aut.	
ID del terminale Telnet: ANSI	Rice
Emetti segnale acustico alla connessione o disconnessione	
Converti input Impostazioni <u>A</u> SCII	
OK Annulla	

Impostazioni ASCII 🛛 🔹 🕅
Trasmissione ASCII Aggiungi avanzamento riga ad ogni ritorno a capo inviato £co dei caratteri digitati localmente Intervallo riga: millisecondi Intervallo carattere: millisecondi
Ricezione ASCII ✓ Aggiungi avanzamento riga ad ogni ritorno a capo ricevuto Codifica forzata dati in ricezione in ASCII a 7 bit ✓ A capo automatico
OK Annulla

Metodo di codifica del sistema ? 🔀
Selezionare il metodo di codifica del sistema host Shift-JIS Standard <u>J</u> IS
OK Annulla

Enter commands as prescribed in the specifications of the ASCII protocol.

16.2.2 ASCII protocol port RS-232

This is the protocol used on port TS232 of the drive.

This is used for a point-to-point communication. Therefore, only one driver can be connected to this interface, and it is not necessary to enter the drive's address.

The messages used in communication are reported in the table below, where the message fields feature a "#"followed by a letter.

Field	Description	Range Range	
riela	Description	Max	Min
#a	Parameter number	NUM_PAR-1	0
#b	Bit number	15	0
#c	Pico-PLC instruction number	255	0
#d	Table number	N_TABLES-1	0
#e	Point of the table number	END_ADR - START_ADR	0
<u></u> #~	Word (16 bit) value (signed)	32767	-32767
#g	(unsigned)	65535	0
#h	Long (32 bit) value (signed)	$+2^{32}-1$	-2^{32}
#i	Bit status value	1	0
[m]	Pico-PLC instruction mnemonic code (2, 3 or 4 characters)	See the paragraph on Pico-PLC	
#n	16 character Text Message string	text	
#1	Pico-PLC 1 st operand	See the paragraph on Pico-PLC	
#2	Pico-PLC 2 nd operand	See the paragraph on Pico-PLC	
#3	Pico-PLC 3 rd operand	See the paragraph on Pico-PLC	
#n	16-char message string		

NUM_PAR and N_TABLES, and START_ADR, END_ADR for each table can be read directly in the drive through dedicated commands.

HI-Drive ASCII protocol: messages definition		
Write Commands		
Description	Tx Format	
Word parameter value	P#a=#g <cr></cr>	
Long parameter value	PL#a=#h <cr></cr>	
Bit status	B#a.#b=#i <cr></cr>	
overwrite Pico-PLC instruction (#)	I#c=#m#1.#2.#3 <cr></cr>	
d word point value TABLE	T#d.#e <cr></cr>	
d long point value TABLE	TL#d.#e <cr></cr>	

Read commands			
Description	Tx Format	Rx Format	
Word parameter value(*)	P#a <cr></cr>	#g <cr><lf></lf></cr>	
Long parameter value	PL#a <cr></cr>	#h <cr><lf></lf></cr>	
Bit status	B#a.#b <cr></cr>	#I <cr><lf></lf></cr>	
Pico-PLC instruction	I#c <cr></cr>	#m <space>#1.#2.#3<c R><lf></lf></c </space>	
d word point value TABLE	T#d.#e <cr></cr>	#g <cr><lf></lf></cr>	
d long point value TABLE	TL#d.#e <cr></cr>	#h <cr><lf></lf></cr>	
Null command	<cr></cr>	<cr><lf></lf></cr>	
Command abort(**)	xxxxxx <esc></esc>	<cr><lf></lf></cr>	
Erro	r messages		
Description		RX message string	
Write command success		Ok <cr><lf></lf></cr>	
Command aborted		<cr><lf></lf></cr>	
Syntax error or bad parameter or bit number or value out of range		Syntax Error <cr><lf></lf></cr>	
Pico-PLC running		Pico-PLC in Run <cr><lf></lf></cr>	
COM framing or overrun error		<cr><lf>COM Error<cr><lf></lf></cr></lf></cr>	
Buffer overflow (command too long)		<cr><lf>Buffer Overflow<cr><lf></lf></cr></lf></cr>	

Notes:

(*) the drive requests a word with or without sign, depending on the parameter format.

- Word parameter and	low/high word in a l	long parameter	\rightarrow signed
----------------------	----------------------	----------------	----------------------

- Signless Word and binary parameter	\rightarrow unsigned
--------------------------------------	------------------------

- (**) the previously received characters are ignored and the command is aborted: the drive responds as if it had received a void command.
- (#) do not write instructions and do not save when the drive PLC is in RUN mode

There is no difference between various cases as far as the reception of characters is concerned; some special characters are used for the following functions:

Char	HEX	Description		
SPACE	0x20	No meanings: any space character received will be removed as		
		insignificant.		
BS	0x80	Delete last character: if one of these character is received the last		
		character received will be removed from the buffer		
ESC	0x1B	Abort: if this character is received the command line will be interrupted		
		and the buffer reset		
CR	0x0D	End of message: when this character is received the buffer is complete		
		so the command line can be interpreted		
LF	0x0A	Line feed: end of line		

COM port settings

The communication is based on a standard RS232 model and Hi-drive has the following setting:

COM port settings	
Data bit	8
Parity	None
Stop bit	1

The baudrate can be selected with the values listed in the table :

Hi-drive Response time		
Baudrate	Timout	
9600	(*)	
19200	(*)	
38400	(*)	
56700	(*)	
(*) II 1 1 C '.'		

(*) Under definition

17 USE OF (OPTIONAL) KEYPAD

The keyboard-display module is easy to use. It is used to program the functional data, control the status of the converter and send commands. It can also store data and transfer them to other drives. The module is equipped with five keys, located right under the display. The keys are marked as follows respectively : [S], [+], [-], [T], [E].

The consists of two separate lines: the upper line indicates the drive status (left), the definition of the displayed parameter, its number or the instruction line of the Pico-PLC. The lower line shows the data (in case of a binary parameter, the number of bits can go from zero to fifteen, right to left), or the instruction either of the command or of the Pico-PLC.

The keys functions are as follows:

- **S**, SHIFT, it is used in combination with the other keys to allow the pointer to move within the fields:
 - With T key, the movement within the fields is in the opposite direction (anticlockwise).
 - With + or key, to move the pointer within a field on a digit with major or less "weight" : in this way the tens or hundreds digit can be modified , or..., to enter those values that, otherwise, would take much longer, or to highlight the bit to be modified within binary parameters. If the pointer is in the field with the Pico-PLC instruction number, a new instruction line can be added (using +, the line is added before the displayed instruction), or deleted (using –).
- +, increases the data highlighted by the pointer; in case of PLC instructions, any time you press the key a different instruction is shown. If it is used with the S key, it takes on other functions (see definition of S key). In order to change the bit status, press and hold 1 sec.
- -, decreases the data highlighted by the pointer; in case of PLC instructions, any time you press the key a different instruction is shown. If it is used with the S key, it takes on other functions (see definition of S key). In order to change the bit status, press and hold 1 sec.
- **T**, this key is used to change the field highlighted by the pointer. With S key, the switch between fields is in the opposite direction (anti-clockwise).
- E, ENTER, to confirm the data entered or modified. The modified or entered data or instruction <u>must be saved before going to the next screen</u>, otherwise all changes will be lost. The confirmation command is limited to what appears on the display, and not to all parameters, instructions and tables. <u>IMPORTANT</u>: instructions can be modified even when the Pico-PLC is running (Pr39.13=1). Before making any modifications, stop the Pico-PLC.

The *Pico-PLC instructions* can be modified using the "+" and "-" keys (ensure that the pointer has been moved to highlight the Pico-PLC instruction). In order for a modification to become effective, press "E": a message confirming the modification is displayed.

The *Pico-PLC instructions data* can be modified using the "+" and "-" keys (ensure that the pointer has been moved to highlight the Pico-PLC instruction). In order for a modification to become effective, press "E": a message confirming the modification is displayed .

The value of decimal parameters and the parameter data in the tables can be modified using the "+" and "-" keys (ensure that the pointer has been moved to highlight the value of the decimal parameter or the parameter value in the tables).

The *bit status in binary parameters* can be modified using the "+" and "-" keys (ensure that the pointer has been moved to highlight the bit to be modified). The bits are numbered from 0 to 15 and are shown in growing order, right to left. In order to move the pointer between bits, left to right, press the "S" and "+" keys simultaneously; to move the pointer between bits, right to left, press the "S" and "-"keys simultaneously).

- The data format to be entered in the parameter is already set. If the data is not accepted it means that its format does not match the required format.
- All double word parameters are displayed entirely, not limited to either the high word or the low word. This makes it easier to understand the "long" parameter.
- The keypad can update and store all the parameter values in a 2Kbyte memory. Another 2Kbyte memory is dedicated to CAM tables. This system makes it easy to transfer the stored data to other Hi-drive units.
- Error messages are also displayed on the screen.
- Whenever entering a Pico-PLC instruction, in order for the entered instruction to be saved, press the Enter key. Otherwise, the previous instructions will remain effective.
- A confirmation message will be displayed: changing, inserting, deleting.

The parameter definition can be identified by the following markings: Pr (parameter), Pb (binary parameter), In (Pico-PLC instruction), Cmd (commands), T (tables):

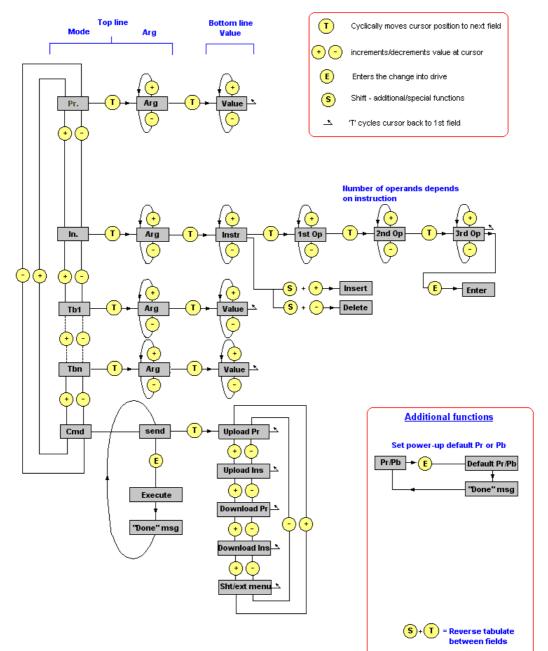
- **Pr. xx** Indicates parameter xx for 16 bit word.
- **PL. xx** Indicates parameter xx for 32 bit word, marked as long parameters.
- **Pb. xx** Indicates the binary parameter at 16 bit xx.
- **In. xx** Indicates the xx instruction number of the Pico-PLC program.
- **Ty. xx** Parameter table, y indicates the table number, xx is the parameter number.

Cmd send keypad command. The type of command is displayed on the second line.

Here follows a list of possible commands (the pointer must be positioned in the second line. Other commands can be seen using the + key):

- <u>Upload</u> and <u>download</u> of parameters and tables. The data are stored in the Eeprom.
- <u>Upload</u> and <u>download</u> of Pico-PLC instructions. The data are stored in the Eeprom.
- Reduction or <u>enlargement of the display menu</u>. The enlarged menu can display all parameters (in order to see all parameters, press the Enter key to activate this function).

Each command must be performed from the command Enter. Through these commands the settings can be transferred between drives. Ensure that the drive and motor versions where the parameters will be applied have been correctly identified: ensure that drive and motor have the same features.


The following messages may be displayed on the screen, in addition to the value of the parameters and the instructions of the Pico-PLC:

- **IdLE** At start up. It indicates that the converter is disabled.
- **run** At start up and by Pr0, this message indicates that there is no alarm and that the converter is enabled. The motor shaft may be rotating.

- **Er. xx** This message indicates that the converter has detected an alarm (xx indicates the alarm code) and has therefore been disabled. When it detects an alarm, the converter is brought to Pr0 and the alarm code is displayed.
- **dEF** Indicates that the drive is set to default status and must be programmed using the motor key parameters. Error code = 15.

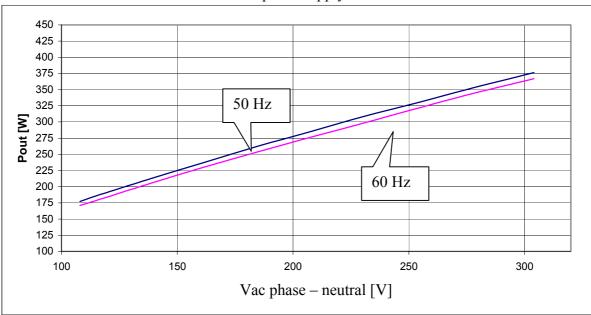
It is possible to select what parameter you want to be displayed when the drive is powered on. Follow the procedure below: connect the keypad to the drive to power it up; move to the parameter you want to be displayed. Press Enter. A "default parameter" message is displayed on the screen, warning that the previous setting has been changed. Switch off the keypad (disconnect the keypad from the drive) and switch it on again (connecting it to the drive).

18 Appendix A : Conventions

Reference	Positive
Motor shaft movement(motor shaft view)	
Torque	Positive
Resolver counter	Increments
Encoder output	A JALIA
Tachometer signal	Positive
Iu	torque • $\sin(\vartheta)$
Iv	$torque \bullet \sin\left(\mathcal{G} + \frac{2 \bullet \pi}{3}\right)$
Encoder In. A B	Counter increment
Frequency A	Counter increment

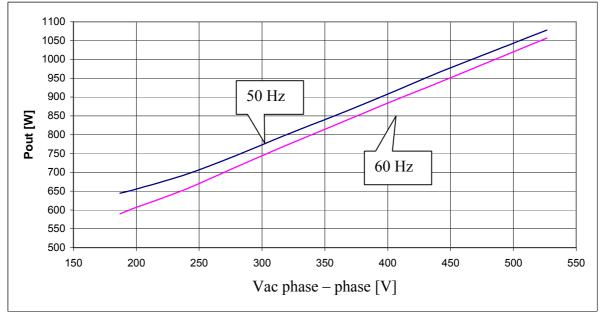
19 Appendix B : Flash information

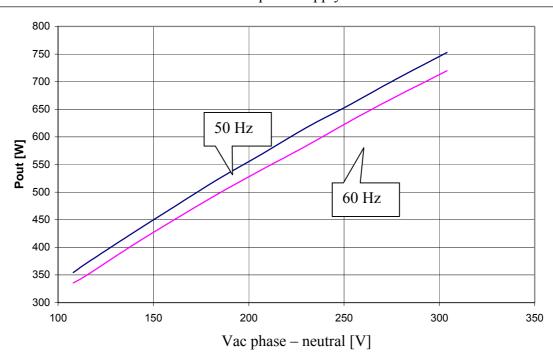
- TO SAVE PARAMETERS USE b42.15
- TO SAVE THE PLC PROGRAM USE b42.14
- TO CHANGE THE INSTRUCTIONS, PLC b39.13 MUST BE 0
- WHEN THE OPERATING MODE IS CHANGED, USE b42.13 TO LOAD THE DEFAULT PARAMETERS (b40.2 MUST BE 0)
- BEOFRE CHANGING Pr181, MAKE SURE THAT b40.2=0
- THE SPEED REFERENCE WILL BE LIMITED TO THE VALUE OF Pr32
- WHEN TORQUE CONTROL IS USED, Pr2 AND Pr3 MUST BE SET TO 1000
- WHEN AN ACTIVE OPERATING MODE IS USED, b40.2 MUST BE 1
- IF READ-WRITE PARAMETERS CANNOT BE CHANGED USING THE KEYPAD, MAKE SURE THAT b42.1 IS 1. IF IT WAS 1, PROBABLY THE SAME PARAMETERS ARE MODIFIED BY THE PLC PROGRAM.

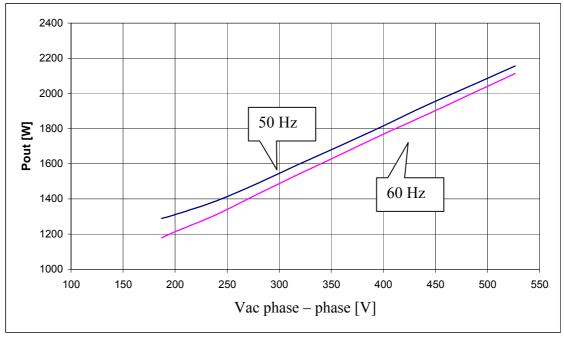

20 Appendix C : Software timing

Period	Task
64 μs	Current control
128 µs	Speed control
512 μs	Fast operating mode management
128 µs	Torque limit management
128 μs	Speed reference management
512 μs	Braking resistor management
1.024 ms	Slow operating mode management
6.144 ms	Thermal motor image
6.144 ms	Digital inputs
6.144 ms	Pico-PLC program scanning
6.144 ms	Digital outputs
6.144 ms	Speed window management

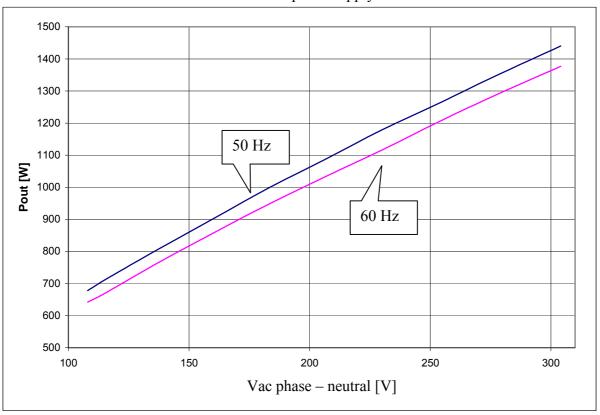
21 Appendix D : Continuous working

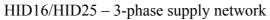

In continuous operation, the power supplied to the drive must not go beyond the limit curves shown in the following figures.

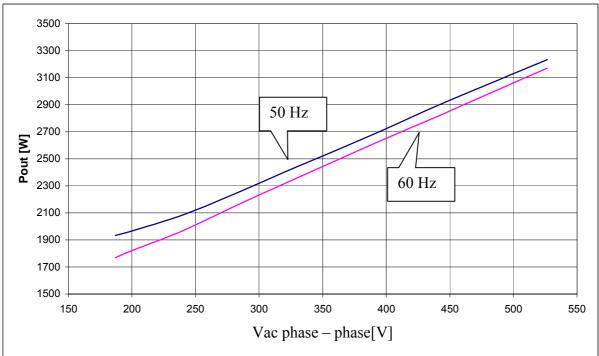

The limit power depends on the voltage and frequency of the supply network.


HID2 – 1-phase supply network

HID2 – 3-phase supply network

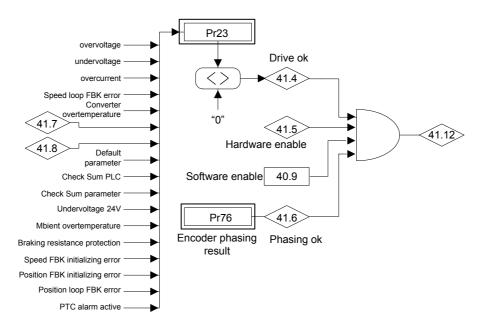



HID5/HID8 – 3-phase supply network



HID5/HID8 – 1-phase supply network

HID16/HID25 – 1-phase supply network


22 Appendix E : Alarms

Code in Pr23	Alarm	Remedies
0	No alarm	
1	Overvoltage	Check the three-phase power line. Check the break circuit and the braking resistor Check the application
2	Undervoltage	Check the three-phase power line.
3	Overcurrent	Check for any mechanical blockage and make sure the motor is the appropriate size for its current use. Check the motor connections and any phase- phase or phase-ground short-circuits. Check the length and type of the motor cable in use. Make sure a mains filter isn't connected to the motor!
4	Speed loop FBK error	Check the connections of the speed loop and the connectors on both sides (drive-motor).
5	PTC motor alarm	-Check the PTC connection cable. -If the alarm persists, disable the drive, remove power from the motor and de-energize the drive (24VDC). Remove the PTC connector from the drive, short –circuit the PTC (connecting PTC+ and PTC-) on the same drive terminal block. Supply power to the drive (24VDC). If the alarm persists, either the drive is in fault state, or the PTC on the motor is in fault state. (at the end of the test, remove the PTC short-circuiting connection).
6	Power module overtemperature	Check the cooling fans and for any restrictions to air flow. Check the breaking cycle. Check the ambient temperature in the electric cabinet where the drive is installed, as well as the ambient temperature outside the cabinet.
7	External alarm	Depends on the application (see Pico-PLC program)
8	Auxiliary alarm	Depends on the application (see Pico-PLC program)
10 (*)	PLC check sum	Set and save default parameters, switch off and on again the drive and repeat programming.
11 (*)	Parameter check sum	Set and save default parameters, switch off and on again the drive and repeat programming.
15	Default parameters	Set and save default parameters, switch off and on again the drive and repeat programming.
21	Undervoltage 24VDC	The drive input voltage is below the low limit : voltage is too low.
22	Ambient over temperature	Check the cooling fans and for any restrictions to air flow. Check the ambient temperature in the electric cabinet where the drive is installed, as well as the ambient temperature outside the cabinet.
24	Braking transistor protection	Short-circuit braking resistance. If an external braking resistor is connected to the drive, check the resistor statures and wiring.
25 (**)	Speed loop FBK initialization error	Check the speed FBK settings. Check the speed FBK connection.

Code in Pr23	Alarm	Remedies
26 (**)	Position loop FBK initialization error	Check the position FBK settings. Check the position FBK connection.
28	Position loop FBK error	Check the connections of the position loop and the connectors on both sides (drive-motor).
I ² T "the red led is blinking continuously"	Current limit (I ² T)	The drive goes in I ² T mode due to an overload (the current required is more than the current that can be supplied). Check : The wiring between drive and motor (there should be no inverted phases). Take special care with motors where the connector is replaced by a terminal block : it's easy to make a mistake. Adhere strictly to the wiring diagrams. - Mechanical dimensioning

(*) reset only after default values have been loaded and saved.

(**) can be only reset at the next power on.

23 History of manual revisions

Any time the manual is updated, the new or modified parts are identified by a symbol () beside the text.

Rev. 0November 2004First edition: total pages: 150Rev. 0.1October 2005Introduction of the productHID35 and HID45Programmable outputs adjourned

For other informations log into website www.sbcelettronica.com. Aranges to the manual data can be made by the manufacturer without advance notice. The data shown in the manual correspond to the specifications relating to the revision date

Divisione Barker S.B.C.

EUROPE

BELGIUM, LUXEMBURG PROCOTEC BVBA Lieven Bauwensstraat 25A

8200 Brugge (Industriezone Waggelwater) Tel. +32-50-320611 - Fax +32-50-320688 www.procotec.be - info@procotec.be

DENMARK

SERVOTECH AS Ulvehavevei 42-46 - 7100 VEJLE Tel. +45-7942-8080 - Fax. +45-7942-8081 www.servotech.dk - servotech@servotech.dk

FRANCE TRANSTECHNIK SERVOMECANISMES S.A. Z.A. Ahuy Suzon

17 Rue Des Grandes Varennes - 21121 Ahuy Tel. +33-380-550000 - Fax +33-380-539363 www.transtechnik.fr - infos@transtechnik.fr

GREAT BRITAIN

AMIR POWER TRASMISSION LTD Amir House, Maxted Road - Hemel Hempstead Hertfordshire - HP2 7DX Tel +44-1442-212671 - Fax +44-1442-246640 www.amirpower.co.uk - apt@amirpower.co.uk

QUIN SYSTEMS LIMITED

Oakland Business Centre Oakland Park - Wokingham Berkshire - RG41 2FD - U.K. Tel. +44-118-9771077 - Fax +44-118-9776728 www.quin.co.uk - sales@quin.co.uk

HOLLAND VARIODRIVE AANDRIJF-EN BESTURINGSTECHNIEK B.V

A. van Leeuwenhoekstraat 22 3261 LT Oud-Beijerland Tel. +31-186-622301 - Fax +31-186-615228 www.variodrive.nl - sales@variodrive.nl

PORTUGAL SIEPI LDA

Parque Industrial do Arneiro, Lote 46 Sáo Julião do Tojal - 2660-456 Loures Tel. +351-21-9737330 - Fax +351-21-9737339 www.gruposiepi.com - Siepi@mail.Telepac.Pt

Worldwide distribution

SPAIN INTRA AUTOMATION SL C/ALABAU, 20 Horno Alcedo E-46026 Valencia Tel. +34-96-3961008 - Fax +34-96-3961018 www.intraautomationsl.com info@intraautomationsl.com

SWITZERLAND INDUR ANTRIEBSTECHNIK AG Margarethenstrasse 87 CH - 4008 Basel

Tel. +41-61-2792900 - Fax +41-61-2792910 www.indur.ch - info@indur.ch TURKEY

SANPA LTD STI Plaj Yolu, Ersoy Apt. No. 14 D, 4 34740 Suadiye - Istanbul Tel. +90-216-4632520 - Fax +90-216-3622727 www.sanpaltd.com.tr - sanpa@turk.net

NORTH AMERICA CANADA

PARS ROBOTICS GROUP INC. 441 Esna Park Drive, units 11-12 Markham, Ontario, L3B 1H7 Tel. +1-905-4772886 - Fax +1-905-4770980 www.parsrobotics.com - pars@parsrobotics.com

UNITED STATES PARKER HANNIFIN CORPORATION COMPUMOTOR DIVISION 5500 Business Park Drive Rohnert Park, CA 94928 Tel. +1-707-5847558 - Fax +1-707-5842446 www.compumotor.com CMR_Customer_Service@parker.com

CENTRAL AMERICA MEXICO

PARKER HANNIFIN DE MÉXICO Eje 1 Norte No. 100

Parque Ind. Toluca 2000 - Toluca 50100 Tel. +52 722 - 2754200 - Fax +52 722 - 2799308 www.parker.com

SOUTH AMERICA

ARGENTINA, CILE, PARAGUAY, URUGUAY R.A. INGENIERIA ELECTRONIC IND. Y COM.

Arregui 5382 - 1408 Buenos Aires Tel. +54-11-45675543 - Fax +54-11-45662870 www.raing.com.ar - ra@raing.com.ar

AUTOMOTION LTDA. Acesso Jose Sartorelli Km2.1

VENEZUELA TEKNOMAQ C.A.

BRAZIL

Avenida Manuel Diaz Rodriguez Edif. Milano Local C Santa Monica - Caracas Tel. +58-212-6335657 - Fax +58-212-6330466 teknomag@cantv.net

Parque das Arvores, 18550-000 Boituva - SP

ASIA

ISRAEL

AF ELECTRONICS MOTOR CONTROL PO BOX 741 52322 Ramat-Gan Israel Tel. +972-3-6745457 - Fax +972-3-6776342 afmotor@zahav.net.il

MALAYSIA

PRESTIGE MACHINERY No. 46, Jalan Bateri 34/5 Bukit Kemuning Light Industrial Area 42450 Shah Alam - Sengalor D.E. Tel. +60-3-5880-9851 - Fax +60-3-5880-8364 presmach@maxis.net.my

TAIWAN AUTO ACCURACY CO. LTD No. 18, 35RD, Taichung Industrial Park Taichung City Tel. +886-42-3594847 - Fax +886-42-3591083 www.autoaccuracy.com.tw - autoauto@ms2.hinet.net

OCEANIA

AUSTRALIA, NEW ZEALAND MOTION SOLUTIONS AUSTRALIA PTY LTD

Factory 2, 21-29 Railway Avenue Huntingdale, 3166 Melbourne, Victoria Tel. +613-9563-0115 - Fax +613-9568-4667 www.motion-solutions.com.au sales@motion-solutions.com.au

Parker

Parker Hannifin S.p.A. Electromechanical Automation Via Gounod 1 20092 Cinisello Balsamo (MI), Italia Tel: +39 0266012459 Fax: +39 0266012808 www.sbcelettronica.com sales.sbc@parker.com

Parker Hannifin GmbH

Electromechanical Automation Robert-Bosch-Str. 22 D-77656 Offenburg, Germania Tel: +49 (0)781 509-0 Fax: +49 (0)781 509-98-258 www.parker-emd.com sales.hauser@parker.com

Parker Hannifin plc

Electromechanical Automation 21 Balena Close Poole, Dorset. BH17 7DX UK Tel: +44 (0)1202 50 6200 Fax: +44 (0)1202 69 5750 www.parker-end.com sales.digiplan@parker.com